设(sinx2)'=f(x),∫f(x)dx=?不定积分∫1/(x+x²)dx=?
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 02:35:00
设(sinx2)'=f(x),∫f(x)dx=?不定积分∫1/(x+x²)dx=?
f(x)=cosx² * 2x
∫f(x)dx=∫cosx²dx²=sinx²+C
原式=∫{1/√[(x+1/2)²+3/4]}dx.
令x+1/2=(√3/2)tant,则:tant=(2x+1)/√3,dx=(√3/2)(sect)²dt,
且sint=√{(sint)²/[(sint)²+(cost)²]}=√{(tant)²/[1+(tant)²]}
=tant/√[1+(tant)²]=[(2x+1)/√3]/√[1+(2x+1)²/3]
=(2x+1)/√[3+(2x+1)²].
∴原式=∫{1/√[(3/4)(tant)²+3/4]}(√3/2)(sect)²dt
=∫(1/sect)(sect)²dt
=∫(1/cost)dt
=∫[1/(cost)²]d(sint)
=∫{1/[1-(sint)²]}d(sint)
=(1/2)∫{[(1+sint)+(1-sint)]/[(1+sint)(1-sint)]}d(sint)
=(1/2)∫[1/(1-sint)]d(sint)+(1/2)∫[1/(1+sint)]d(sint)
=(1/2)ln|1+sint|-(1/2)ln|1-sint|+C
=(1/2)ln|1+(2x+1)/√[3+(2x+1)²]|-(1/2)ln|1-(2x+1)/√[3+(2x+1)²]|+C
=(1/2)ln|√[3+(2x+1)²]+2x+1|-(1/2)ln|√[3+(2x+1)²-2x-1]+C
∫f(x)dx=∫cosx²dx²=sinx²+C
原式=∫{1/√[(x+1/2)²+3/4]}dx.
令x+1/2=(√3/2)tant,则:tant=(2x+1)/√3,dx=(√3/2)(sect)²dt,
且sint=√{(sint)²/[(sint)²+(cost)²]}=√{(tant)²/[1+(tant)²]}
=tant/√[1+(tant)²]=[(2x+1)/√3]/√[1+(2x+1)²/3]
=(2x+1)/√[3+(2x+1)²].
∴原式=∫{1/√[(3/4)(tant)²+3/4]}(√3/2)(sect)²dt
=∫(1/sect)(sect)²dt
=∫(1/cost)dt
=∫[1/(cost)²]d(sint)
=∫{1/[1-(sint)²]}d(sint)
=(1/2)∫{[(1+sint)+(1-sint)]/[(1+sint)(1-sint)]}d(sint)
=(1/2)∫[1/(1-sint)]d(sint)+(1/2)∫[1/(1+sint)]d(sint)
=(1/2)ln|1+sint|-(1/2)ln|1-sint|+C
=(1/2)ln|1+(2x+1)/√[3+(2x+1)²]|-(1/2)ln|1-(2x+1)/√[3+(2x+1)²]|+C
=(1/2)ln|√[3+(2x+1)²]+2x+1|-(1/2)ln|√[3+(2x+1)²-2x-1]+C
设(sinx2)'=f(x),∫f(x)dx=?不定积分∫1/(x+x²)dx=?
设f(x)=lnx,计算不定积分∫(1/ x*x)f'(1/X)dx
设f(x)=lnx,计算不定积分∫(1/ x^2)*f'(1/x)dx
∫x*f(x)dx=(x^3)lnx+c.求不定积分∫f(x)dx!
求不定积分 ∫ [f(x)+xf'(x)]dx=
不定积分∫f(x)g(x)dx=?
“设f(x)=x2,求不定积分f ‘(2x)dx=.不定积分f(2x)dx= ’”
计算不定积分^∫(2,0)f(x)dx,其中f(x)=(x+1,x1
设f(x)=x+√x(x>0),求∫f′(x²)dx
∫xf(x)dx=x^3Inx+C,求不定积分∫f(x)dx
高数不定积分选择:设函数f(x)连续,且∫xf(x)dx=x^2*e^x +C,则∫f(x)dx=( )
设函数f(x)=e^2x,则不定积分 ∫f'(x)dx等于 求详解 ,