等腰△ABC的三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,则△AB
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 04:57:51
等腰△ABC的三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,则△ABC的周长是( )
A. 9
B. 12
C. 9或12
D. 不能确定
A. 9
B. 12
C. 9或12
D. 不能确定
∵关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,
∴△=(b+2)2-4(6-b)=0,即b2+8b-20=0;
解得b=2,b=-10(舍去);
①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;
②当b为底,a为腰时,则5-2<5<5+2,能够构成三角形;
此时△ABC的周长为:5+5+2=12.
故选B.
∴△=(b+2)2-4(6-b)=0,即b2+8b-20=0;
解得b=2,b=-10(舍去);
①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;
②当b为底,a为腰时,则5-2<5<5+2,能够构成三角形;
此时△ABC的周长为:5+5+2=12.
故选B.
等腰△ABC的三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,则△AB
在等腰△ABC中,三边分别为a、b、c,其中a=3,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△
已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程x2-4x+b=0有两个相等的实数根,试判断△AB
在等腰三角形ABC中三边分别为a、b、c,其中a=5,若关于x的方程x^2+(b+2)x+6-b=0有两个相等的实数根,
在等腰三角形ABC中,三边长分别为a,b,c,其中a=5,且关于x的方程x方=(b+2)x+6-b=0有两个相等的实数根
已知a,b,c,分别是ΔABC的三边,其中a=1.c=4,且关于x方程x2-4x+b=0有两个相等的实数根,试判断ΔAB
已知△ABC的三边长为abc且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根
已知a,b,c分别是△ABC的三边,关于x的方程x2+2√bx+2c-a=0有两个相等的实数根,方程3cx+2b=2a的
已知△ABC的三边长分别是a,b,c,其中a=3,c=5,且关于x的一元二次方程x2-4x+b=0有两个相等的实数根,判
已知a,b,b分别为△ABC的三边,关于x的方程x平方+2根号b+2c-a=0,有两个相等的实数根 方程3cx+2b=2
已知a,b,c为△ABC的三边,且关于x的方程(c-b)x平方+2(b-a)x+(a-b)=0有两个相等的实数根
已知a,b,c分别是△ABC的三边,其中a=4,c=4倍根号2,且关于x的方程x的平方-4x+b=0有两个相等的实数值,