作业帮 > 综合 > 作业

c语言牛顿迭代法解 y=x三次方减去4倍的x的平方减去10等于0在1.0和-5附近的解要求误差小于10的-3次方

来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/08 12:30:43
c语言牛顿迭代法解 y=x三次方减去4倍的x的平方减去10等于0在1.0和-5附近的解要求误差小于10的-3次方
后天俺们就交上去了
// 下面是方法和例子,自己去搞定.
牛顿迭代法,是用于求方程或方程组近似根的一种常用的算法设计方法.设方程为f(x)=0,用某种数学方法导出等价的形式 x(n+1) = g(x(n)) = x(n)–f(x(n))/f‘(x(n)).然后按以下步骤执行:
(1) 选一个方程的近似根,赋给变量x1;
(2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;
(3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算.
若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就
认为是方程的根.
例1:已知f(x) = cos(x) - x. x的初值为3.14159/4,用牛顿法求解方程f(x)=0的近似值,要求精确到10E-6.
算法分析:f(x)的Newton代法构造方程为:x(n+1) = xn - (cos(xn)-xn) / (-sin(xn)-1).
#include
double F1(double x); //要求解的函数
double F2(double x); //要求解的函数的一阶导数函数
double Newton(double x0, double e);//通用Newton迭代子程序
int main()
{
double x0 = 3.14159/4;
double e = 10E-6;

printf("x = %f\n", Newton(x0, e));
getchar();
return 0;
}
double F1(double x) //要求解的函数
{
return cos(x) - x;
}
double F2(double x) //要求解的函数的一阶导数函数
{
return -sin(x) - 1;
}
double Newton(double x0, double e)//通用Newton迭代子程序
{
double x1;
do
{
x1 = x0;
x0 = x1 - F1(x1) / F2(x1);
} while (fabs(x0 - x1) > e);

return x0; //若返回x0和x1的平均值则更佳
}
例2:用牛顿迭代法求方程x^2 - 5x + 6 = 0,要求精确到10E-6.
算法分析:取x0 = 100; 和 x0 = -100;
f(x)的Newton代法构造方程为: x(n+1) = xn - (xn*xn – 5*xn + 6) / (2*xn - 5)
#include
double F1(double x); //要求解的函数
double F2(double x); //要求解的函数的一阶导数函数
double Newton(double x0, double e);//通用Newton迭代子程序
int main()
{
double x0;
double e = 10E-6;
x0 = 100;
printf("x = %f\n", Newton(x0, e));
x0 = -100;
printf("x = %f\n", Newton(x0, e));
getchar();
return 0;
}
double F1(double x) //要求解的函数
{
return x * x - 5 * x + 6;
}
double F2(double x) //要求解的函数的一阶导数函数
{
return 2 * x - 5;
}
double Newton(double x0, double e)//通用Newton迭代子程序
{
double x1;
do {
x1 = x0;
x0 = x1 - F1(x1) / F2(x1);
} while (fabs(x0 - x1) > e);

return (x0 + x1) * 0.5;
}
具体使用迭代法求根时应注意以下两种可能发生的情况:
(1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;
(2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导
致迭代失败.选初值时应使:|df(x)/dx|