作业帮 > 数学 > 作业

高数,设f(x)=∫0→x2 xsint dt,求f(x)″

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 19:35:39
高数,设f(x)=∫0→x2 xsint dt,求f(x)″
积分后面那是0到x的平方 答案是6xsinx^2+4x^3cosx^2
因为f(x)=< 0→x²>∫xsintdt,所以
f(x)=-xcost+c|< 0→x²>
=-xcos(x²)+c-(-xcos0+c)
=x-xcos(x²)
所以:f'(x)=1-cos(x²)+2x²sin(x²)
f"(x)=[-cos(x²)]’+[2x²sin(x²)]’
=sin(x²)*2x+[2x²]’sin(x²)+2x²[sin(x²)]’
=2xsin(x²)+4xsin(x²)+2x²cos(x²)[(x²)]’
=2xsin(x²)+4xsin(x²)+4x³cos(x²)
=6xsin(x²)+4x³cos(x²)