高数,设f(x)=∫0→x2 xsint dt,求f(x)″
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 19:35:39
高数,设f(x)=∫0→x2 xsint dt,求f(x)″
积分后面那是0到x的平方 答案是6xsinx^2+4x^3cosx^2
积分后面那是0到x的平方 答案是6xsinx^2+4x^3cosx^2
因为f(x)=< 0→x²>∫xsintdt,所以
f(x)=-xcost+c|< 0→x²>
=-xcos(x²)+c-(-xcos0+c)
=x-xcos(x²)
所以:f'(x)=1-cos(x²)+2x²sin(x²)
f"(x)=[-cos(x²)]’+[2x²sin(x²)]’
=sin(x²)*2x+[2x²]’sin(x²)+2x²[sin(x²)]’
=2xsin(x²)+4xsin(x²)+2x²cos(x²)[(x²)]’
=2xsin(x²)+4xsin(x²)+4x³cos(x²)
=6xsin(x²)+4x³cos(x²)
f(x)=-xcost+c|< 0→x²>
=-xcos(x²)+c-(-xcos0+c)
=x-xcos(x²)
所以:f'(x)=1-cos(x²)+2x²sin(x²)
f"(x)=[-cos(x²)]’+[2x²sin(x²)]’
=sin(x²)*2x+[2x²]’sin(x²)+2x²[sin(x²)]’
=2xsin(x²)+4xsin(x²)+2x²cos(x²)[(x²)]’
=2xsin(x²)+4xsin(x²)+4x³cos(x²)
=6xsin(x²)+4x³cos(x²)
高数,设f(x)=∫0→x2 xsint dt,求f(x)″
高数积分题一道,设f(x)有连续导数且F(x)=∫(0→x)f(t)f'(2a-t)dt
①设f(x)=x+2∫(0,1)f(t)dt,求f(x).
设连续函数f(x)满足f(x)=e^x-∫(0,x)f(t)dt,求f(x)
设f(x)=sinx-∫(0~t)(x-t)f(t)dt,f为连续函数,求f(x).
设f(x)=∫(1,x^2) e^(-t)/t dt,求∫(0,1)xf(x)dt
高数:已知f(x)=x-2∫f(t)dt.[是0到1上的定积分],求f(x)
设f(x)连续,若f(x)满足∫(0,1)f(xt)dt=f(x)+xe^x,求f(x)
设f(x)满足 ∫0到x tf(x-t)dt=sinx+kx ,求k和f(x)
一道高数证明题,设函数f(x)在(-∞,+∞)上连续,F(x)=∫(0,x)(x-2t)f(t)dt,试证:若f(x)单
设f(x)为连续函数,且符合关系f(x)=e^x-∫(0,x)(x-t)f(t)dt,求函数f(x)
设f(X)连续且满足 f(x)=e^x+sinx- ∫ x 0 (x-t)f(t)dt,并求该函数f(x)