作业帮 > 数学 > 作业

已知抛物线y^2=4x,F是焦点,直线l是经过点F的任意直线

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 14:20:55
已知抛物线y^2=4x,F是焦点,直线l是经过点F的任意直线
1.
设M(x,y),直线L:x-1=ky
(这样设就已经包括斜率不存在的情况了,但是不包括斜率为0的情况,但是这题斜率为0显然不用讨论,这里的k不是斜率,斜率是1/k )
直线OM斜率为y/x
∴(1/k)·(y/x)=-1
k=-y/x
又∵M在L 上
∴x-1=ky,把k=-y/x代入得
x-1=-y²/x
即x²-x+y²=0
即(x-1/2)²+y²=1/4,x≠0
2.
设C(y1²/4,y1)、D(y2²/4,y2),则直线CD:y-y1=k[x - (y1²/4)]
由题意得:
x1x2+y1y2=-4
x1=y1²/4,x2=y2²/4
∴(y1y2)²/16 + y1y2 =-4
解得y1y2= -8
x1x2=(y1y2)²/16=4
k=(y1-y2)/(x1-x2)=(y1-y2)/[(y1²/4)-(y2²/4)]=4/(y1+y2)
∴直线CD:y-y1=k[x - (y1²/4)]
y-y1=[4/(y1+y2)][x - (y1²/4)]
y=[4/(y1+y2)][x - (y1²/4)] +y1
y=[4/(y1+y2)]·x - [4/(y1+y2)]·(y1²/4) +y1
y=[4/(y1+y2)]·x - [y1²/(y1+y2)] +y1
y=[4/(y1+y2)]·x + [y1y2/(y1+y2)]
y=[4/(y1+y2)]·x - [8/(y1+y2)]
y=[4/(y1+y2)](x - 2)
当k不存在时,CD:x=2
∴直线CD必定经过点(2,0)