设各项都为正数的数列{an}的前n项和为Sn,且Sn=1/2(an+1/an)
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 04:25:42
设各项都为正数的数列{an}的前n项和为Sn,且Sn=1/2(an+1/an)
(1)S[1]=a[1]=1/2(a[1]+1/a[1]),于是:a[1]=1=√1-√0
S[2]=a[2]+1=1/2(a[2]+1/a[2]),于是:a[2]=√2-1,S[2]=√2
S[3]=a[3]+√2=1/2(a[3]+1/a[3]),于是:a[3]=√3-√2,S[3]=√3
S[4]=a[4]+√3=1/2(a[4]+1/a[4]),于是:a[4]=√4-√3
于是可以猜想:a[n]=√n-√(n-1);
(2)显然:n=1时成立,假设n=k时,a[k]=√k-√(k-1),S[k]=√k
n=k+1时,S[k+1]=a[k+1]+S[k]=a[k+1]+√k=1/2(a[k+1]+1/a[k+1]),
于是:a[k+1]=√(k+1)-√k
即:n=k+1时也成立
由(1)(2)得:a[n]=√n-√(n-1)对于n∈N成立.
再问: S[k+1]=a[k+1]+S[k]=a[k+1]+√k=1/2(a[k+1]+1/a[k+1]), 于是:a[k+1]=√(k+1)-√k 这部看不懂
S[2]=a[2]+1=1/2(a[2]+1/a[2]),于是:a[2]=√2-1,S[2]=√2
S[3]=a[3]+√2=1/2(a[3]+1/a[3]),于是:a[3]=√3-√2,S[3]=√3
S[4]=a[4]+√3=1/2(a[4]+1/a[4]),于是:a[4]=√4-√3
于是可以猜想:a[n]=√n-√(n-1);
(2)显然:n=1时成立,假设n=k时,a[k]=√k-√(k-1),S[k]=√k
n=k+1时,S[k+1]=a[k+1]+S[k]=a[k+1]+√k=1/2(a[k+1]+1/a[k+1]),
于是:a[k+1]=√(k+1)-√k
即:n=k+1时也成立
由(1)(2)得:a[n]=√n-√(n-1)对于n∈N成立.
再问: S[k+1]=a[k+1]+S[k]=a[k+1]+√k=1/2(a[k+1]+1/a[k+1]), 于是:a[k+1]=√(k+1)-√k 这部看不懂
设各项都为正数的数列{an}的前n项和为Sn,且Sn=1/2(an+1/an)
设各项都为正数的数列an 前n项和为sn 且满足Sn=1/2(an+1/an)
已知数列{an}的各项均为正数,前n项和为Sn,且Sn=an(an+1)/2,设bn=1/2Sn,Tn=b1+b2+…+
各项均为正数的数列{an}的前n项和为S,且sn=1\8(an+2)².求证数列{an}是等差数列
已知数列{an}各项均为正数,其前N项和为sn,且满足4sn=(an+1)^2.求{an}的通项公式
在各项均匀正数的等比数列|an|中,数列{an}的前n项和为Sn,S1>0,6Sn=(an+1)( an+2
设各项均为正数的数列{an}的前n项和为sn已知a1=1且(Sn+1+λ)an=(Sn+1)an+1对一切n∈正整数成立
已知数列中各项均为正数,sn是数列an 中的前N项和,且Sn=1/2.求数列an的通项公式
已知各项均为正数的数列{an}的前n项和为sn,且sn,an,1成等差数列,求数列{an}的通项公式
已知数列{an}的各项都为正数,a1=1,前n项和Sn满足Sn-Sn-1=根号Sn+根号Sn-1(n≥2),求数列{an
已知数列{An}的各项均为正数,前n项和为Sn,且满足2Sn=An²+n-4 1.求证{An}为等差数列
正数数列an的前n项和为Sn,且2根号Sn=an+1