作业帮 > 数学 > 作业

如图,在梯形ABCD中,AD∥BC,∠C=90°,E为CD的中点,EF∥AB交BC于点F

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 04:52:22
如图,在梯形ABCD中,AD∥BC,∠C=90°,E为CD的中点,EF∥AB交BC于点F

(1)求证:BF=AD+CF;
(2)当AD=1,BC=7,且BE平分∠ABC时,求EF的长.
(1)证明:
证法一:如图(1),延长AD交FE的延长线于N
∵AD∥BC,∠C=90°
∴∠NDE=∠FCE=90°
又∵E为CD的中点,
∴DE=EC,
∵∠DEN=∠FEC,
在△NDE和△FCE

∠NDE=∠FCE
ED=CE
∠DEN=∠CEF,
∴△NDE≌△FCE(ASA)
∴DN=CF
∵AB∥FN,AN∥BF,
∴四边形ABFN是平行四边形
∴BF=AD+DN=AD+FC
证法二:如图(2),过点D作DN∥AB交BC于N
∵AD∥BN,AB∥DN,
∴AD=BN,
∵EF∥AB,
∴DN∥EF
∴△CEF∽△CDN

CE
DC=
CF
CN

CE
DC=
1
2,

CF
CN=
1
2,即NF=CF
∴BF=BN+NF=AD+FC
(2)∵AB∥EF,
∴∠1=∠BEF,
∵∠1=∠2,
∴∠BEF=∠2,
∴EF=BF,
∵BF=BN+NF=AD+CF,
∴EF=BF=AD+CF=AD+BC-BF=1+7-BF,
∴2BF=8,
∴BF=4,
∴EF=4.
故EF的长为4.
再问: 我想知道 利用哪个判定可以证出△ABE全等于△NBE