达芬奇勾股定理证法给我证明,蛮难的,谢谢,好的加分,在线等!证明a²+b²=c&am
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 14:55:22
达芬奇勾股定理证法
给我证明,蛮难的,谢谢,好的加分,在线等!
给我证明,蛮难的,谢谢,好的加分,在线等!
证明a²+b²=c²
三张纸片其实是同一张纸,把它撕开重新拼凑之后,中间那个“洞”的面积前后仍然是一样的,但是面积的表达式却不再相同,让这两个形式不同的表达式相等,就能得出一个新的关系式——勾股定理,所有勾股定理的证明方法都有这么个共同点.
观察纸片一,因为要证的事勾股定理,那么容易知道EB⊥CF,又因为纸片的两边是对称的,所以能够知道四边形ABOF和CDEO都是正方形.然后需要知道的是角A'和角D'都是直角,原因嘛,可以看纸片一,连结AD,因为对称的缘故,所以∠BAD=∠FAD=∠CDA=∠EDA=45°,那么很明显,图三中角A'和角D'都是直角.
证明:第一张纸片多边形ABCDEF的面积S1=S正方形ABOF+S正方形CDEO+2S△BCO=OF^2+OE^2+OF·OE
第三张纸片中多边形A'B'C'D'E'F'的面积S2=S正方形B'C'E'F'+2△C'D'E'=E'F'^2+C'D'·D'E'
因为S1=S2
所以OF^2+OE^2+OF·OE=E'F'^2+C'D'·D'E'
又因为C'D'=CD=OE,D'E'=AF=OF
所以OF·OE=C'D'·D'E'
则OF^2+OE^2=E'F'^2
因为E'F'=EF
所以OF^2+OE^2=EF^2
勾股定理得证.
观察纸片一,因为要证的事勾股定理,那么容易知道EB⊥CF,又因为纸片的两边是对称的,所以能够知道四边形ABOF和CDEO都是正方形.然后需要知道的是角A'和角D'都是直角,原因嘛,可以看纸片一,连结AD,因为对称的缘故,所以∠BAD=∠FAD=∠CDA=∠EDA=45°,那么很明显,图三中角A'和角D'都是直角.
证明:第一张纸片多边形ABCDEF的面积S1=S正方形ABOF+S正方形CDEO+2S△BCO=OF^2+OE^2+OF·OE
第三张纸片中多边形A'B'C'D'E'F'的面积S2=S正方形B'C'E'F'+2△C'D'E'=E'F'^2+C'D'·D'E'
因为S1=S2
所以OF^2+OE^2+OF·OE=E'F'^2+C'D'·D'E'
又因为C'D'=CD=OE,D'E'=AF=OF
所以OF·OE=C'D'·D'E'
则OF^2+OE^2=E'F'^2
因为E'F'=EF
所以OF^2+OE^2=EF^2
勾股定理得证.
达芬奇勾股定理证法给我证明,蛮难的,谢谢,好的加分,在线等!证明a²+b²=c&am
已知a²b²+a²+b²+1=4ab,求ab的值
(2a+b-c)²-(2a-b+c)²等于什么
数学推理与证明 求证a²+b²+3》ab+根号3(a+b)
若双曲线kx²-2ky²=4的一条准线方程是y=1,
关于x的方程(x²-4x-2)m+3x²+1=0是不
2倍的根号3²-根号3²得多少?
若a+b=5,ab=-4,那么a²b+3a²b²+ab&s
x²-bx-a²+ab等于什么?
若实数a,b满足a²+ab-b²=0,则a/b=
一元二次方程(a-1)x²-a²=1-x有一个根是x
若分式x²-4/x²-x-2的值为零,则x的值为多少