已知抛物线y^2=2px(p>0),过动点M(a,0)且斜率为1的直线与抛物线交于不同的两点A、B,abs AB
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 22:33:00
已知抛物线y^2=2px(p>0),过动点M(a,0)且斜率为1的直线与抛物线交于不同的两点A、B,abs AB
1,求实数a的取值范围
若线段AB的垂直平分线交X轴于点N,求三角形ABN的面积的最大值
1,求实数a的取值范围
若线段AB的垂直平分线交X轴于点N,求三角形ABN的面积的最大值
(Ⅰ)直线方程为y=x-a,将y=x-a代入y2=2px,得
x2-2(a+p)x+a2=0
设直线l与抛物线两个不同交点的坐标为A(x1,y1),B(x2,y2),
∴|AB|= =
∵0<|AB|≤2p,8p(p+2a)>0,∴0< ≤2p,解得- <a≤-
(Ⅱ)设AB的垂直平分线交AB于点Q,令其坐标为(x0,y0),
由中点坐标公式有
∴|QM|= = p
又∵△MNQ为等腰直角三角形,
∴|QN|=|QM|= p
∴S△NAB= |AB|•|QN|= p•|AB|≤ p•2p= p2
即△NAB面积的最大值为 p2.
x2-2(a+p)x+a2=0
设直线l与抛物线两个不同交点的坐标为A(x1,y1),B(x2,y2),
∴|AB|= =
∵0<|AB|≤2p,8p(p+2a)>0,∴0< ≤2p,解得- <a≤-
(Ⅱ)设AB的垂直平分线交AB于点Q,令其坐标为(x0,y0),
由中点坐标公式有
∴|QM|= = p
又∵△MNQ为等腰直角三角形,
∴|QN|=|QM|= p
∴S△NAB= |AB|•|QN|= p•|AB|≤ p•2p= p2
即△NAB面积的最大值为 p2.
已知抛物线y^2=2px(p>0),过动点M(a,0)且斜率为1的直线与抛物线交于不同的两点A、B,abs AB
已知抛物线x^2=2py(p>0),过动点M(0,a),且斜率为1的直线L与该抛物线交于不同两点A,B,|AB|≤2p
已知:斜率为1的直线l过抛物线y^2=2px(p>0)的焦点F,且与抛物线交于A,B两点
过抛物线y2 =2px (p>0)焦点,且斜率为1的直线交抛物线于A,B两点,若AB=8,求抛物线方程
已知过点(0,4),斜率为-1的直线l与抛物线C;y平方=2px(p>0)交于A,B两点.(1)求
.已知抛物线y^2=2PX(P>0).直线的斜率为-1,且过抛物线的焦点F,交抛物线于A,B两点,线段AB的长为3,
1.已知抛物线y^2=2PX(P>0).直线的斜率为-1,且过抛物线的焦点F,交抛物线于A,B两点,线段AB的长为3,求
抛物线问题:若过点M(0,4),且斜率为(-1)的直线l与抛物线C:y^2=2px(p>0)交于A、B两点,
已知直线l过点M(4,0)且与抛物线y的平方=2px(p>0)交于A、B两点,以炫AB为直径的圆恒过坐标原点O.求抛物线
已知抛物线y^2=8x,过点(a,0)且斜率为1的直线与抛物线交于不同两点A,B,且AB绝对值小于等于8,求a取值范围
已知抛物线y^2=2px(p>0),过焦点F且斜率为正的直线交其准线于点A,交抛物线于B、C两点,B在A、C之间.
如图,已知抛物线C:y2=2px(p>0)的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点.