作业帮 > 数学 > 作业

如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证四边

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 06:49:17
如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证四边形AEFG菱
如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形
写因为所以,
证明:AB垂直AC,AD垂直BC,则:∠CAD=∠B.(均为角EAG互余);
又∠ACG=∠BCE.则∠CAD+∠ACG=∠B+∠BCE,
即∠AGE=∠AEG.(三角形外角性质),AE=AG.
又EF垂直BC,则AE=EF.(角平分线的性质).
故EF=AG;又EF平行AG,则四边形AEFG为平行四边形;
又AE=EF,所以,四边形AEFG为菱形.