设 x 趋近于0时,f(x)与x^2是等价无穷小量,ln(1+sinx^4)是比x^n f (x)高阶的无穷小量而x^n
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 04:40:28
设 x 趋近于0时,f(x)与x^2是等价无穷小量,ln(1+sinx^4)是比x^n f (x)高阶的无穷小量而x^n f (x)是比e^(x^2)-1高阶的无穷小量,则正整数n?
注意x趋于0时,ln(1+x)就等价于x,而sinx也等价于x
那么ln(1+sinx^4)等价于sinx^4再等价于x^4
所以
x^n*f(x)就比x^4低阶
又f(x)与x^2是等价无穷小量
那么x^n就比x^2低阶
同样,x趋于0时,
e^(x^2) -1是x^2的等价无穷小
那么x^n*f(x)比x^2高阶
f(x)与x^2是等价无穷小量
所以x^n比x^0要高阶
于是x^n就比x^2低阶,比x^0要高阶
所以正整数n=1
那么ln(1+sinx^4)等价于sinx^4再等价于x^4
所以
x^n*f(x)就比x^4低阶
又f(x)与x^2是等价无穷小量
那么x^n就比x^2低阶
同样,x趋于0时,
e^(x^2) -1是x^2的等价无穷小
那么x^n*f(x)比x^2高阶
f(x)与x^2是等价无穷小量
所以x^n比x^0要高阶
于是x^n就比x^2低阶,比x^0要高阶
所以正整数n=1
设 x 趋近于0时,f(x)与x^2是等价无穷小量,ln(1+sinx^4)是比x^n f (x)高阶的无穷小量而x^n
求极限 x趋近于0时与 ln (1+2x)等价的无穷小量是?
又来问高数题啦!设当x->0时,(1-cosx)ln(1+x^2)是比xsinx^n高阶的无穷小量,而xsinx^n是比
函数f(x)=ln |x|当x趋近于0时,是无穷大量还是无穷小量?
x趋近于0 求 x+sinx的等价无穷小量
当x趋向于0时,下列函数中,那些是比x高阶的无穷小量?那些是与x同阶的无穷小量?那些是与x等阶的无穷小量?
x趋近于0时sin根号x是x的什么阶无穷小量
证明:当x趋近0时,(e的x次方)-1和x是等价无穷小量.
能帮我解这题吗?,当x趋于0时,无穷小量x-sinx/x的1/2次方是x的多少阶无穷小量.需要具体步骤.
当x趋近于0时,2x^2-tanx是x的什么阶无穷小量
求当X趋近于0时,无穷小量e^x-1-x+xsinx的阶
大一微积分解答:当x趋近于0时,下列四个无穷小量中,哪一个是比其他三个更高阶的无穷小量?