圆锥曲线方程已知椭圆的中心在原点,准线为x=正负4倍根号2,若直线X-根号2y=0与椭圆的交点在x轴上的射影恰为椭圆的焦
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 18:47:46
圆锥曲线方程
已知椭圆的中心在原点,准线为x=正负4倍根号2,若直线X-根号2y=0与椭圆的交点在x轴上的射影恰为椭圆的焦点,求椭圆的方程
已知椭圆的中心在原点,准线为x=正负4倍根号2,若直线X-根号2y=0与椭圆的交点在x轴上的射影恰为椭圆的焦点,求椭圆的方程
设该椭圆的方程为x²/a²+y²/b²=1
准线x=a²/c=4√2
得a²=4√2c
a²>c²
4√2c>c²
c(c-4√2)<0
得0<c<4√2
b²=a²-c²=4√2c-c²
该椭圆的方程为x²/(4√2c)+y²/(4√2c-c²)=1
将x=c代入椭圆方程,得
c²/(4√2c)+y²/(4√2c-c²)=1
得y²=(c³-8√2c²+32c)/4√2
将x=c代入x-√2y=0,得
c-√2y=0
得y=√2c/2,即y²=c²/2
(c³-8√2c²+32c)/4√2=c²/2
(c²-8√2c+32)/4√2=c/2
c²-10√2c+32=0
√Δ=√[(10√2)²-4•32]=6√2
c=(10√2±6√2)/2
c1=8√2,c2=2√2
0<c<4√2,则c=2√2,c²=8
a²=4√2c=16
b²=a²-c²=16-8=8
该椭圆的方程为x²/16+y²/8=1
准线x=a²/c=4√2
得a²=4√2c
a²>c²
4√2c>c²
c(c-4√2)<0
得0<c<4√2
b²=a²-c²=4√2c-c²
该椭圆的方程为x²/(4√2c)+y²/(4√2c-c²)=1
将x=c代入椭圆方程,得
c²/(4√2c)+y²/(4√2c-c²)=1
得y²=(c³-8√2c²+32c)/4√2
将x=c代入x-√2y=0,得
c-√2y=0
得y=√2c/2,即y²=c²/2
(c³-8√2c²+32c)/4√2=c²/2
(c²-8√2c+32)/4√2=c/2
c²-10√2c+32=0
√Δ=√[(10√2)²-4•32]=6√2
c=(10√2±6√2)/2
c1=8√2,c2=2√2
0<c<4√2,则c=2√2,c²=8
a²=4√2c=16
b²=a²-c²=16-8=8
该椭圆的方程为x²/16+y²/8=1
圆锥曲线方程已知椭圆的中心在原点,准线为x=正负4倍根号2,若直线X-根号2y=0与椭圆的交点在x轴上的射影恰为椭圆的焦
已知椭圆的中心在原点,准线为x=±4√2 ,若过直线x- √2 y=0与椭圆的交点在x轴上的射影恰为椭圆的焦点,
已知中心在原点,长轴在x轴上的椭圆的两准线距离为2,若椭圆被直线x+y+1=0截得的弦中点的横坐标为-2/3,求椭圆方程
椭圆方程怎么求已知椭圆的中心在原点,焦点在x轴上,一个顶点A(0,-1),若椭圆右焦点到直线x-y+2根号2=0的距离为
已知椭圆中心在原点,焦点在x轴上,直线x+y=1被椭圆截得的弦AB的长为2根号2,且AB的中点与原点连线的斜率为(根号2
已知椭圆的中心在原点,交点在y轴上,离心率为3分之根号3,以原点为圆心,椭圆短半轴长为半径的圆与直线y=x...
已知中心在原点,长轴在x轴上的椭圆的两准线间的距离为2根号3,若椭圆被直线x y 1截得的弦的中点的横坐...
已知椭圆的中心在坐标原点,对称轴为坐标轴,离心率为根号3/2,一条准线方程为x=4倍根号3/3.1.求椭圆的方程.2.若
已知椭圆的中心在原点,焦点在x轴上,离心率e=2/根号3,椭圆上各点到直线L:x-y+根号5+根号2=0的最短距离为1
已知椭圆的中心在原点 焦点在x轴上 离心率为二分之根号二,且椭圆经过x平方+y平方-4x-2∨2y=0的圆心c.,求椭圆
数学题椭圆方程的题椭圆中心为原点O,焦点在x轴上,离心率e=根号2\2,直线y=x=1交椭圆于A、B两点,且△AOB的面
已知椭圆的中心在原点,焦点在x轴上,焦距为2根号15,且经过点M(4,1)直线l:x-y+m=0交椭圆于不同的两点