一道数学题 高二的如图,F1,F2是椭圆C:x^2/a^2 + y^2/b^2 =1 (a>b>0)的左 右焦点,A,B
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 21:54:18
一道数学题 高二的
如图,F1,F2是椭圆C:x^2/a^2 + y^2/b^2 =1 (a>b>0)的左 右焦点,A,B分别是椭圆C的右顶点和上顶点,P是椭圆C上第一象限的一点,O为坐标原点,PF1垂直PF2.
1.设椭圆C的离心率为e,证明:根号2/2<e<1.
2.若 |向量OA| x |向量OB|=|向量OP|^2,证明:向量OP x 向量PA=0
3.在(2)的条件下,设 |向量PA| =根号5 - 1,求椭圆的长轴长.
如图,F1,F2是椭圆C:x^2/a^2 + y^2/b^2 =1 (a>b>0)的左 右焦点,A,B分别是椭圆C的右顶点和上顶点,P是椭圆C上第一象限的一点,O为坐标原点,PF1垂直PF2.
1.设椭圆C的离心率为e,证明:根号2/2<e<1.
2.若 |向量OA| x |向量OB|=|向量OP|^2,证明:向量OP x 向量PA=0
3.在(2)的条件下,设 |向量PA| =根号5 - 1,求椭圆的长轴长.
1.c=√(a^2-b^2),设P(p,q),由焦半径公式,|PF1|=a+ep,|PF2|=a-ep.
∵PF1⊥PF2,
∴PF1^2+PF2^2=F1F2^2,
即2(a^2+e^2*p^2)=4c^2,①
两边都除以2a^2,得1+e^2*(p/a)^2=2e^2,
|p/a|
∵PF1⊥PF2,
∴PF1^2+PF2^2=F1F2^2,
即2(a^2+e^2*p^2)=4c^2,①
两边都除以2a^2,得1+e^2*(p/a)^2=2e^2,
|p/a|
一道数学题 高二的如图,F1,F2是椭圆C:x^2/a^2 + y^2/b^2 =1 (a>b>0)的左 右焦点,A,B
设F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a〉b〉0)的左、右焦点...
设F1,F2分别是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左,右焦点,过F2的直线l与椭圆C相交于A,
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左,右焦点分别为F1,F2,右顶点为A,直线l过F2交于椭圆B,C
已知F1,F2分别是椭圆C:x^2/a^2+y^2/b^2=1(a>0,b>0)的左,右焦点,点M是椭圆上一点,且∠F1
如图,已知椭圆x^2/a^2+y^2/b^2=1(a>b>0),F1,F2分别为椭圆的左,右焦点,A为椭圆的上顶点,直线
关于椭圆的设F1.F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,过F2的直线与椭圆C相
一道高二数学题已知F1,F2是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右两个焦点,P(-√2,1)在
椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左,右焦点分别是F1(-c,0),F2(c,0),过F1斜率为
设F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,过F2的直线L与椭圆C相交于A、
如图,已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=1/2,左、右焦点为F1(-1,0)、F2
设F1,F2分别为椭圆C:(x^2/a^2)+(y^2/b^2)=1(a>b>0)的左,右焦点,过F2的直线L与椭圆C相