已知0<a<b,f(x)在(a,b)连续可导,求证存在一点x属于(a,b)使f(b)-f(a)=xf'(x)(b-a)
已知0<a<b,f(x)在(a,b)连续可导,求证存在一点x属于(a,b)使f(b)-f(a)=xf'(x)(b-a)
已知F(X)在区间[a,b]上连续,在(a,b)可导,求证:在(a,b)内至少存在一点t,使得[bF(b)-aF(a)]
设f(x)在[a,b]上连续,在(a,b)可导,且f(a)=f(b)=0,证明存在c属于(a,b),使f'(c)+f(c
证明:f(x)在(a,b)可导连续,f(a)=f(b).至少存在一点m.使f(m)=f'(m)
b>a>0,f(x)在[a,b]上连续,在(a,b)内可导,证明,存在n属于(a,b)使得f(a)-f(b)=n(lna
函数f(x)在[a,b]上连续,(a,b)内可导.证明存在一点&属于(a,b)使(bf(b)-af(a))/(b-a)=
高数中值定理已知f(x)在[a,b]连续,在(a,b)可导,且f(a)=f(b)=0,求证在(a,b)至少有一点t属于(
高数罗尔定理之类的大致就是f(x)在(a,b)上连续可导b>a>0,f(a)=f(b),证明,存在c属于(a,b),使f
设函数f(x)在(a,b)上连续,在(a,b)内可导,且f(a)=0,证明:至少存在一点n属于(a,b)
设函数f(x)在[a,b]上连续,(a,b)可导,且f(a)=0,证明至少存在一点ξ∈(a
设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)
f(x)在(a,b)上具有二阶连续导数又 f'(a)=f'(b)=0 证明:存在u属于(a,b) f(u)