来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 03:51:13
高一数学必修5解三角形问题2
在△ABC中,a+b=10,cosC是方程2x²-3x-2=0的一个根,求△ABC周长的最小值
解方程2x²-3x-2=0可得x=2,或 x=-1/2.
∵在△ABC中,a+b=10,cosC是方程2x²-3x-2=0的一个根,
∴cosC=-1/2.
由余弦定理可得
c²
=a²+b²-2ab•cosC
=a²+b²+ab
=(a+b)²-ab,
即:c²=100-a(10-a)=(a-5)²+75
故当a=5时,c最小为√75=5√3
故△ABC周长a+b+c的最小值为10+5√3.