如图所示,已知△ABC和△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 00:30:09
如图所示,已知△ABC和△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③∠BFC+∠EGC=180°;④∠BOC=∠EOC,其中正确的结论个数为( )
A. 1个\x05B. 2个\x05C. 3个\x05D. 4个
A. 1个\x05B. 2个\x05C. 3个\x05D. 4个
首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,得到△CFG是等边三角形,易得③正确.
∵△ABC和△DCE均是等边三角形,
∴BC=AC,CD=CE,∠ACB=∠ECD=60°,
∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,
∴△BCD≌△ACE(SAS),
∴AE=BD,(①正确)
∠CBD=∠CAE,
∵∠BCA=∠ACG=60°,AC=BC,
∴△BCF≌△ACG(ASA),
∴AG=BF,(②正确)
同理:△DFC≌△EGC(ASA),
∴CF=CG,
∴△CFG是等边三角形,
∴∠CFG=∠FCB=60°,
∴FG∥BE,(③正确)
过C作CM⊥AE于M,CN⊥BD于N,
∵△BCD≌△ACE,
∴∠BDC=∠AEC,
∵CD=CE,∠CND=∠CMA=90°,
∴△CDN≌△CEM,
∴CM=CN,
∵CM⊥AE,CN⊥BD,
∴∠BOC=∠EOC,∴④正确;
故答案为:①②③④.
再问: 你能不能读一读我提的问题啊
再答: △BCF≌△ACG ∠BFC=∠AGC ∵∠AGC+∠EGC=180 ∴∠BFC+∠EGC=180
∵△ABC和△DCE均是等边三角形,
∴BC=AC,CD=CE,∠ACB=∠ECD=60°,
∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,
∴△BCD≌△ACE(SAS),
∴AE=BD,(①正确)
∠CBD=∠CAE,
∵∠BCA=∠ACG=60°,AC=BC,
∴△BCF≌△ACG(ASA),
∴AG=BF,(②正确)
同理:△DFC≌△EGC(ASA),
∴CF=CG,
∴△CFG是等边三角形,
∴∠CFG=∠FCB=60°,
∴FG∥BE,(③正确)
过C作CM⊥AE于M,CN⊥BD于N,
∵△BCD≌△ACE,
∴∠BDC=∠AEC,
∵CD=CE,∠CND=∠CMA=90°,
∴△CDN≌△CEM,
∴CM=CN,
∵CM⊥AE,CN⊥BD,
∴∠BOC=∠EOC,∴④正确;
故答案为:①②③④.
再问: 你能不能读一读我提的问题啊
再答: △BCF≌△ACG ∠BFC=∠AGC ∵∠AGC+∠EGC=180 ∴∠BFC+∠EGC=180
如图所示,已知△ABC和△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC
如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC
如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G
已知ΔABC和ΔDCE均是等边三角形,点B,C,E在同一条直线上,AE与BD交于O,AE与CD交于G,AC与BD交于F,
已知三角形ABC和三角形DCB均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD
额外给很多分如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与
如图,已知三角形abc和三角形dce都是等边三角形,且点b,c,e在同一条直线上,连结bd交ac与点g,连结ae交cd于
如图,△ABC与△DEC均为等边三角形,B.E.C在一条直线上,AE与BD交于点H,AC与BD交于点P,AE与CD交于点
如图,B C E三点在一条直线上,△ABC和△DCE均为等边三角形,BD与AC交于M,AE与CD交于点N 连接MN,求证
如图,△ABC和△DCE均是等边三角形,B,C,E三点共线,AE交CD与G,BD交AC于F,求证:1:AE=BD 2:C
如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC与F,AD交CE于H.
如图,三角形ABC,三角形DCE都是等边三角形,BD交AC于点F,AE交DC于点G,且B,C,E在一条直线上,