作业帮 > 数学 > 作业

已知集合A={1,2,3,4······n},求其所有子集的元素之和

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 05:59:32
已知集合A={1,2,3,4······n},求其所有子集的元素之和
要过程
A的子集一共有2^n个,
在这2^n个子集中,我们来考察各个元素出现的次数,因为每个元素地位均等,所以我们只要考察一个就行了,其他类似;
以元素1为例:
没有出现1这个元素的子集个数为2^(n-1)个,原因如下:
没有元素1的子集,即可把这些集合看做集合B={2,3,4,5.,n}的子集,根据公式,有2^(n-1)个;
在A的所有子集中元素1出现的次数是2^n-2^(n-1)=2^(n-1);
类似的,2到n每一个元素出现的次数都是2^(n-1)
而1+2+3+...+n=n(n+1)/2
所以,所求的所有子集的元素之和就=[2^(n-1)]*[n(n+1)/2]
化简得:n(n+1)*2^(n-2)
如果不懂,请Hi我,