若A为n阶方阵,E为n阶单位阵,且A^3=O,证明A-E为可逆矩阵!
若A为n阶方阵,E为n阶单位阵,且A^3=O,证明A-E为可逆矩阵!
设A,B均为n阶方阵,E为单位矩阵,证明:若E-AB可逆,则E-BA也可逆,并求E-BA的逆
设A为n阶方阵,e为n阶单位矩阵,满足方程A²-3A-E=0,证明A可逆
设A,B为n阶方阵,E为n阶单位矩阵,证明:若A+B=AB,则A-E可逆.
设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n,
A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1
设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=0,则E-A和E+A是否可逆
设A为n阶方阵,E为n阶单位阵,满足条件A^2=A,且A≠E,证明:(1)A+E可逆,并求(A+E)^-1 ,(2)A不
ABC 均为 N阶方阵且 2E=B+E(E是单位矩阵 证明A平方=A条件B平方=E
若n阶方阵A与B满足AB+A+B=E(E为单位矩阵).证明(1)B+E为可逆矩阵(2)(B+E)^(-1)=1/2(A+
若A是n阶方阵,且AAT=E,|A|=-1,证明|A+E|=0.其中E为单位矩阵.
a为n阶方阵E为n阶单位阵,切A^2+2A-3E=0.证明A和A-4E可逆、求A^-1 和(A-4E)^-1的值.