设A,B都是N阶方阵,I为N阶单位矩阵,且B=B^2,A=I+B,证明A可逆
设A,B都是N阶方阵,I为N阶单位矩阵,且B=B^2,A=I+B,证明A可逆
设A,B都是N阶方阵,I为N阶单位矩阵,且B=B2,A=I+B,证明A可逆
设A,B为n阶单位方阵,I为n阶单位方阵,B及I+AB可逆,证明I+BA也可逆
设A B 为n阶矩阵,且A B AB-I 可逆 证明A-B的逆 可逆
设A B为n阶矩阵,且A B AB-I可逆,证明:A-(B的逆)可逆
设n阶方阵A,B的乘积AB为可逆矩阵,证明A,B都是可逆矩阵
设A,B是n阶方阵,E是n阶单位矩阵,且AB=A-B,证明A+B可逆
设A,B为n阶方阵,且2A-B-AB=E,A^2=A,证明:A-B可逆,并求其逆矩阵
设A,B为n阶方阵,E为n阶单位矩阵,证明:若A+B=AB,则A-E可逆.
设n阶方阵A和B满足条件A+B=AB,证明A-E为可逆矩阵
设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.
设A和B为n阶方阵,A^2B+AB^2=E 证明A+B可逆