直线y=mx+1与椭圆ax^2+y^2=2交于A,B两点,以OA,OB为邻边作平行四边形OAPB(O为坐标原点)
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 09:33:04
直线y=mx+1与椭圆ax^2+y^2=2交于A,B两点,以OA,OB为邻边作平行四边形OAPB(O为坐标原点)
(1)当a=2时,求P的轨迹方程
(2)若a,m满足a+2m^2=1求平行四边形OAPB的面积函数S(a)的值域
(1)当a=2时,求P的轨迹方程
(2)若a,m满足a+2m^2=1求平行四边形OAPB的面积函数S(a)的值域
把y=mx+1代入2x^2+y^2=2
求出XA+XB=-2m/(2+m^2)
YA+YB=4(2+m^2)
AB的中点即OP的中点 又因为O为原点
所以P(XA+XB,YA+YB)
令X=XA+XB,Y=YA+YB
相除的m=-2X/Y 在代入Y=YA+YB
整理得:Y^2+X^2+2Y=0
2,椭圆则a=1-2m^2>0
1/根2>m>-1根2 其中m不等于0 {只有一个交点}
把直线代入椭圆:(1-m^2)x^2+2mx+1=0
X1=1/1+m
x2=1/m-1
求出Y1 Y2
平行四边形面积可用m表示,
把m=根(1-a)/2代入上面
再求值遇
求出XA+XB=-2m/(2+m^2)
YA+YB=4(2+m^2)
AB的中点即OP的中点 又因为O为原点
所以P(XA+XB,YA+YB)
令X=XA+XB,Y=YA+YB
相除的m=-2X/Y 在代入Y=YA+YB
整理得:Y^2+X^2+2Y=0
2,椭圆则a=1-2m^2>0
1/根2>m>-1根2 其中m不等于0 {只有一个交点}
把直线代入椭圆:(1-m^2)x^2+2mx+1=0
X1=1/1+m
x2=1/m-1
求出Y1 Y2
平行四边形面积可用m表示,
把m=根(1-a)/2代入上面
再求值遇
直线y=mx+1与椭圆ax^2+y^2=2交于A,B两点,以OA,OB为邻边作平行四边形OAPB(O为坐标原点)
直线l:y=kx+1与椭圆C:2X^2+Y^2=2交于A、B两点,以OA,OB为邻边作平行四边形OAPB
斜率为2的直线与椭圆x^2/4+y^2=1交于两点A,B,求|OA||OB|范围(O为坐标原点)
过m(-2,0)作直线l交椭圆x^2/2+y^2=1于A,B两点,以OA,OB为一组邻边作平行四边形OAPB,
直线y=kx+2与椭圆x^2+y^2/2=1交于A、B两点,O是坐标原点,当直线OA、OB的斜率之和为3时,直线AB的方
直线l:y=kx+1与椭圆C:x²+y²/2=1交于A,B两点,以OA,OB为邻边做平行四边形OAP
若椭圆ax^2+by^2=1与直线x+y=1交于A,B两点,M为中心,直线OM(O为原点)的斜率为√2/2,且OA⊥OB
过点M(-2,0)作直线L与抛物线y=1/4x^2交于A,B两点,若以OA,OB为两边作平行四边形OAPB
已知直线y=kx+2交抛物线x∧2=2y于A,B两点,O为坐标原点,(1)求证OA⊥OB
已知直线y=kx+1与圆x^2+y^2=4相交于A,B两点,以OA,OB为邻边作平行四边形OAPB,求点P的轨迹方程
直线y=kx+1与圆x^2+y^2=4相交于A,B两点,以OA,OB为邻边作平行四边形OAPB,求点P的轨迹方程
已知直线m:y=kx+b与椭圆X的平方/2+y2=1相交于A,B两点,O为原点.若OA向量丄OB向量,求直线m与以原点为