作业帮 > 数学 > 作业

在梯形ABCD中,AB∥CD,AD=CD=BC,∠ABC=72°,AC,BD相较于点O.求证AB=BD,点O是线段BD的

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 20:42:14
在梯形ABCD中,AB∥CD,AD=CD=BC,∠ABC=72°,AC,BD相较于点O.求证AB=BD,点O是线段BD的黄金分割点
证明:(1)AB∥CD,AD=BC,则梯形ABCD为等腰梯形,故∠DAB=∠ABC=72°;
BC=CD,则∠CBD=∠CDB;
AB∥CD,则∠ABD=∠CDB.
故∠CBD=∠ABD=36°,∠ADB=180°-∠ABD-∠DAB=72°.
即∠ADB=∠DAB,得AB=BD.
(2)同理可求:∠DAC=36°=∠ABD;又∠ADO=∠ADB.
则⊿DAO∽⊿DBA,AD/BD=OD/AD,AD^2=BD*OD;
又∠AOD=180°-∠DAC-∠ADB=72°=∠ADO,AD=AO;
而∠DBA=∠CAB=36°,故BO=AO=AD.
所以,BO^2=DB*DO,故点O为线段BD的黄金分割点.