作业帮 > 数学 > 作业

已知sin^4θ+cos^4θ=5/9,求sin2θ的值

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 03:27:36
已知sin^4θ+cos^4θ=5/9,求sin2θ的值
我算出来sin^22θ=4/9,可别人得出的是8/9,为什么会是这样?完全不理解,最后答案到底是什么?
因为 (sin θ)^2 +(cos θ)^2 =1,
且 (sin θ)^4 +(cos θ)^4 =5/9,
所以 1 = [ (sin θ)^2 +(cos θ)^2 ]^2
= (sin θ)^4 +(cos θ)^4 +2 (sin θ)^2 (cos θ)^2
= 5/9 +(1/2) *(2 sin θ cos θ)^2
= 5/9 +(1/2) *(sin 2θ)^2.
解得 sin 2θ = ±2√2 /3.
= = = = = = = = =
注意:
2 (sin θ)^2 (cos θ)^2
= (1/2) *(2 sin θ cos θ)^2
= (1/2) *(sin 2θ)^2.