已知集合M={1,2,3,m},N={4,7,n4,n2+3n}(m、n∈N),映射f:y→3x+1是从M到N的一个函数
已知集合M={1,2,3,m},N={4,7,n4,n2+3n}(m、n∈N),映射f:y→3x+1是从M到N的一个函数
已知集合M={1,2,3,m},N={4,7,n^4,n^2,n^2+3n},m,n∈R,映射f:x→y=3x+1是从M
已知集合M={x|0≤x≤3},N={y|0≤y≤2},下列表示从M到N的映射是( )
函数映射方面的题设A={1,2,3,m},B={4,7,n^4,n^2+3n},对应关系:f=x→y=px+q,是从集合
已知集合M={1,2,3,4},N={a,b,c,d},从M到N的所有映射满足N中恰好有一个元素无原象的 映射个数是(
设集合M={-1,0,1},N={2,3,4},从M到N的映射f满足条件:对每个x∈M,都有x+f(x)为偶数,那么这样
设集合M={-1,0,1},N={2,3,4},从M到N的映射f满足条件:对每一个x∈M,都有x+f(x)为偶数,那么这
集合M={X=3m+1,m∈N*},N={y/y=5n+2,n∈N*},则M∩N=?
设集合M={-1,0,1},N={2,3,4,5,6},映射f:M→N.
已知映射f:M→N使集合N中的元素y=²与集合M中的元素x对应,要使映射f:M→N是一一映射,那么M,N可以是
设集合M={-1,0,1},N={2,3,4,5,6},映射f:M→N,使对任意x∈M,都有x+f(x)+xf(x)是奇
已知x=2m-3n根号m+n+3是m+n+3的算术平方根,y=m-n+1根号m+2n是m+2n的立方根,求(x-y)的2