设数列{an}满足a1+3a2+3^2a3+······+3^(n-1)an=n/3,a∈N*.(1)求数列{an}的通
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 15:45:29
设数列{an}满足a1+3a2+3^2a3+······+3^(n-1)an=n/3,a∈N*.(1)求数列{an}的通项;(2)设bn=n/an,求数列{bn}的前n项和Sn.
百度有答案但有不明白的地方··
百度有答案但有不明白的地方··
a1+3a2+3^2a3+······+3^(n-1)an=n/3
a1+3a2+3^2a3+······+3^(n-2)a(n-1)=(n-1)/3
两式相减得
3^(n-1)an=n/3-(n-1)/3
3^(n-1)an=(n-n+1)/3
3^(n-1)an=1/3
an=1/3^n
bn=n/an
=n/(1/3^n)
=n*3^n
sn=1*3+2*3^2+.+n*3^n
3sn=1*3^2+2*3^3+.+(n-1)^n+n*3^(n+1)
sn-3sn=3+3^2+3^3+.+3^n-n*3^(n+1)
-2sn=3*(1-3^n)/(1-3)-n*3^(n+1)
-2sn=[3^(n+1)-3]/2-n*3^(n+1)
2sn=n*3^(n+1)-[3^(n+1)-3]/2
2sn=n*3^(n+1)-3^(n+1)/2+3/2
2sn=3^(n+1)(2n-1)/2+3/2
sn=3^(n+1)(2n-1)/4+3/4
sn=(2n-1)*3^(n+1)/4+3/4
再问: a1+3a2+3^2a3+······+3^(n-2)a(n-1)=(n-1)/3 怎么得到的?
再答: 第一项到第n-1项的和
a1+3a2+3^2a3+······+3^(n-2)a(n-1)=(n-1)/3
两式相减得
3^(n-1)an=n/3-(n-1)/3
3^(n-1)an=(n-n+1)/3
3^(n-1)an=1/3
an=1/3^n
bn=n/an
=n/(1/3^n)
=n*3^n
sn=1*3+2*3^2+.+n*3^n
3sn=1*3^2+2*3^3+.+(n-1)^n+n*3^(n+1)
sn-3sn=3+3^2+3^3+.+3^n-n*3^(n+1)
-2sn=3*(1-3^n)/(1-3)-n*3^(n+1)
-2sn=[3^(n+1)-3]/2-n*3^(n+1)
2sn=n*3^(n+1)-[3^(n+1)-3]/2
2sn=n*3^(n+1)-3^(n+1)/2+3/2
2sn=3^(n+1)(2n-1)/2+3/2
sn=3^(n+1)(2n-1)/4+3/4
sn=(2n-1)*3^(n+1)/4+3/4
再问: a1+3a2+3^2a3+······+3^(n-2)a(n-1)=(n-1)/3 怎么得到的?
再答: 第一项到第n-1项的和
设数列{an}满足a1+3a2+3^2a3+······+3^(n-1)an=n/3,a∈N*.(1)求数列{an}的通
设数列an满足a1+3a2+3^2a3+.+3^n-1an=n/3,n∈N*,求数列an的通项公式
设数列【an】满足a1=1,3(a1+a2+a3+······+an)=(n+2)an,求通项an
设数列{an}满足a1+3 a2+3^2 a3+……+3^n-1 an=n/3,a属于N* 求数列{an}的通项
设数列an满足a1=a2=1,a3=2,且对正整数n都有an·an+1·an+2·an+3=an+an+1+an+2+a
设数列{an}满足a1+3a2+3^2a3+.3^n-1×an=n/3,a∈N+.
设 数列an满足a1=2,a(n+1)-an=3·2^(2n-1) (1)求数列an 的通项公式
设数列{an}满足a1+3a2+3平方a3+...+3n-1an=n/3,n属于N*.求数列{an}的通项公式?
设数列{an}满足a1+3a2+3²a3+...+3^(n-1)an=n/3,n∈N+*.(1)求数列{an}
设数列{an}满足a1+3a2+3的平方a3+.+3的n-1次方an=n/3. (1)求数列{an}的通项.
设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)
已知数列{an}满足a1=1,an=a1+1/2a2+1/3a3+...+1/n-1an-1(n>1)求数列{an}的通