1、设P为三角形ABC内一点,求证
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 22:42:08
1、设P为三角形ABC内一点,求证
第一题:并不困难的一道题,最容易的一个解法是建系解析,利用直线的斜率(正切)和向量求解即可.
第二题:多说一些吧:
第一步:不妨设a>b>c,a=b+m=c+m+n,m,n>0;
第二步:a^2+b^2+c^2=1变形为3c^2+2(2m+n)c+(2m^2+2mn+n^2-1)=0,是关于c的一元二次方程,判别式为S=-4(m^2+2mn+2n^2-3);
第四步:假设/a-b/,/b-c/,/c-a/均大于二分之根号二,即有m,n大于二分之根号二,从而S>0,方程无解;
第五步:于是假设不成立,/a-b/,/b-c/,/c-a/中至少有一个不超过二分之根号二.证毕.
(我在攒积分,看在辛苦的份上,帮帮忙设为最佳答案吧,)
第二题:多说一些吧:
第一步:不妨设a>b>c,a=b+m=c+m+n,m,n>0;
第二步:a^2+b^2+c^2=1变形为3c^2+2(2m+n)c+(2m^2+2mn+n^2-1)=0,是关于c的一元二次方程,判别式为S=-4(m^2+2mn+2n^2-3);
第四步:假设/a-b/,/b-c/,/c-a/均大于二分之根号二,即有m,n大于二分之根号二,从而S>0,方程无解;
第五步:于是假设不成立,/a-b/,/b-c/,/c-a/中至少有一个不超过二分之根号二.证毕.
(我在攒积分,看在辛苦的份上,帮帮忙设为最佳答案吧,)
1、设P为三角形ABC内一点,求证
如图,设P为三角形ABC内任意一点,求证:1/2
设p为三角形abc内一点且pc=bc求证ab>ap
设p为三角形abc内一点且pc=bc求证ab>ap
设P点为三角形ABC内一点,求证PA+PB+PC大于1/2(AB+BC+CA)
p为三角形ABC内任意一点,求证:PA+PB
已知p为三角形abc内任意一点.求证:1/2(ab+bc+ca)
已知p为三角形abc内任意一点.求证在:1/2(AB+BC+CA)
已知p为三角形abc内任意一点.求证在:2/1(AB+BC+CA)
初一下学期一题如图,P为三角形ABC内一点,求证:PA+PB
已知P为三角形ABC内一点,求证AB+AC>BP+CP
已知P为三角形ABC内一点,求证:AB+AC>BP+PC