已知数列{an}的各项均为正数,其前n项和为Sn.且满足2Sn=an^2+an(n∈N*).求数列an的通项公式
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 01:33:15
已知数列{an}的各项均为正数,其前n项和为Sn.且满足2Sn=an^2+an(n∈N*).求数列an的通项公式
若bn=n(1/2)^an,求数列{bn}的前n项和Tn.
非常急,求能人十分钟内解答
若bn=n(1/2)^an,求数列{bn}的前n项和Tn.
非常急,求能人十分钟内解答
n=1时,2S1=2a1=a1²+a1
a1²-a1=0 a1(a1-1)=0
a1=0(各项均为正数,舍去)或a1=1
n≥2时,
2Sn=an²+an
2Sn-1=a(n-1)²+a(n-1)
2Sn-2Sn-1=2an=an²+an-a(n-1)²-a(n-1)
an²-a(n-1)²-an-a(n-1)=0
[an+a(n-1)][an-a(n-1)]-[an+a(n-1)]=0
[an+a(n-1)][an-a(n-1)-1]=0
数列各项均为正,an+a(n-1)恒>0,要等式成立,只有an-a(n-1)=1,为定值.
数列{an}是以1为首项,1为公差的等差数列.
an=1+n-1=n
数列{an}的通项公式为an=n
bn=n×(1/2)^an=n/2^n
Tn=b1+b2+b3+...+bn=1/2^1+2/2^2+3/2^3+...+n/2^n
Tn/2=1/2^2+2/2^3+...+(n-1)/2^n+n/2^(n+1)
Tn-Tn/2=Tn/2=1/2^1+1/2^2+1/2^3+...+1/2^n -n/2^(n+1)
=(1/2)(1-1/2^n)/(1-1/2) -n/2^(n+1)
=1-1/2^n -n/2^(n+1)
Tn=2 -1/2^(n-1) -n/2^n
a1²-a1=0 a1(a1-1)=0
a1=0(各项均为正数,舍去)或a1=1
n≥2时,
2Sn=an²+an
2Sn-1=a(n-1)²+a(n-1)
2Sn-2Sn-1=2an=an²+an-a(n-1)²-a(n-1)
an²-a(n-1)²-an-a(n-1)=0
[an+a(n-1)][an-a(n-1)]-[an+a(n-1)]=0
[an+a(n-1)][an-a(n-1)-1]=0
数列各项均为正,an+a(n-1)恒>0,要等式成立,只有an-a(n-1)=1,为定值.
数列{an}是以1为首项,1为公差的等差数列.
an=1+n-1=n
数列{an}的通项公式为an=n
bn=n×(1/2)^an=n/2^n
Tn=b1+b2+b3+...+bn=1/2^1+2/2^2+3/2^3+...+n/2^n
Tn/2=1/2^2+2/2^3+...+(n-1)/2^n+n/2^(n+1)
Tn-Tn/2=Tn/2=1/2^1+1/2^2+1/2^3+...+1/2^n -n/2^(n+1)
=(1/2)(1-1/2^n)/(1-1/2) -n/2^(n+1)
=1-1/2^n -n/2^(n+1)
Tn=2 -1/2^(n-1) -n/2^n
已知数列{an}的各项均为正数,其前n项和为Sn.且满足2Sn=an^2+an(n∈N*).求数列an的通项公式
已知数列{an}各项均为正数,其前N项和为sn,且满足4sn=(an+1)^2.求{an}的通项公式
已知数列AN的各项均为正数,且前N项和满足6Sn=an^2+3an+2,求数列通项公式
已知数列{An}的各项均为正数,前n项和为Sn,且满足2Sn=An²+n-4 1.求证{An}为等差数列
数学题…关于数列已知数列{an}的各项均是正数,其前n项和为Sn,满足an+Sn=41、求数列{an}的通项公式2、设b
数列〔an〕的各项都是正数,其前n项和为Sn满足an+Sn=4.求数列an的通项公式
已知数列{an}的前n项和为Sn,且满足Sn=2an-1,n为正整数,求数列{an}的通项公式an
已知数列中各项均为正数,sn是数列an 中的前N项和,且Sn=1/2.求数列an的通项公式
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
已知各项均为正数的数列{an}的前n项和为sn,且sn,an,1成等差数列,求数列{an}的通项公式
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n属于正整数),求数列{an}的通项公式an
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=an2+n-4(n∈N*).