(2010•山东模拟)如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,AB=4,CCl=4,E在BB
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/06 06:42:08
(2010•山东模拟)如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,AB=4,CCl=4,E在BBl上,且EB1=1,D、F分别为CCl、AlC1的中点.
(I)求证:B1D⊥平面ABD;
(Ⅱ)求异面直线BD与EF所成的角余弦值;
(Ⅲ)求直线EF与平面ABD所成角的正弦值.
(I)求证:B1D⊥平面ABD;
(Ⅱ)求异面直线BD与EF所成的角余弦值;
(Ⅲ)求直线EF与平面ABD所成角的正弦值.
(I)证明:由条件得 DB=2
2,D11=2
2,BB1=4
∴BD2+DB12=BB12
∴B1D⊥DB,
又AB⊥面BCC1B1,
∴BA⊥B1D
∴B1D⊥面ABD(3分)
(Ⅱ)取B1C1的中点G,连接GE、GF,则EG∥BD,
∴∠GEF或其补角为BD、EF所成角(4分)
∵A1B1⊥面BCC1B1,GF∥A1B1∴FG⊥面BCC1B1,∴FG⊥GE
在Rt△EGF中,GE=
2,GF=2,∴tan∠GEF=
2,
∴cos∠GEF=
6
3.
∴BD与EF所成角的余弦值
6
3.(8分)
(Ⅲ)∵F,G分别为对应边的中点,
∴GF∥A1B1∥AB,
又由第二问得:EG∥BD
∴平面ABD∥平面GEF,
所以有:EF∥平面ABD.
故直线EF与平面ABD所成角的正弦值为0.
2,D11=2
2,BB1=4
∴BD2+DB12=BB12
∴B1D⊥DB,
又AB⊥面BCC1B1,
∴BA⊥B1D
∴B1D⊥面ABD(3分)
(Ⅱ)取B1C1的中点G,连接GE、GF,则EG∥BD,
∴∠GEF或其补角为BD、EF所成角(4分)
∵A1B1⊥面BCC1B1,GF∥A1B1∴FG⊥面BCC1B1,∴FG⊥GE
在Rt△EGF中,GE=
2,GF=2,∴tan∠GEF=
2,
∴cos∠GEF=
6
3.
∴BD与EF所成角的余弦值
6
3.(8分)
(Ⅲ)∵F,G分别为对应边的中点,
∴GF∥A1B1∥AB,
又由第二问得:EG∥BD
∴平面ABD∥平面GEF,
所以有:EF∥平面ABD.
故直线EF与平面ABD所成角的正弦值为0.
(2010•山东模拟)如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,AB=4,CCl=4,E在BB
(2010•南开区二模)如图在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,E是BB1上的一点
(2014•鹰潭二模)如图,在直三棱柱ABC-A1B1C1中,AA1=BC=AB=2,AB⊥BC.M、N分别是AC和BB
(2008•花都区模拟)如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中
(2014•浙江模拟)如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点.(II)若棱AA1上存在
如图,在直三棱柱ABC-A1B1C1中,角ABC=90度,AB=BC=AA1=2,D是AB的中点.
如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°.E为BB1的中点,D点在AB上且DE=3
【急】高中立体几何----如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点
(2014•河南模拟)如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,E,F,G分别是AA1,AC,BB1的中
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.