作业帮 > 数学 > 作业

如图,正方形ABCD中,AB=3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15°,则△AEF的面积是_

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 04:47:23
如图,正方形ABCD中,AB=
3
延长EB至G,使BG=DF,连接AG,
∵正方形ABCD,
∴AB=AD,∠ABG=∠ADF=∠BAD=90°,
∵BG=DF,
∴△ABG≌△ADF,
∴AG=AF,
∵∠BAE=30°,∠DAF=15°,
∴∠FAE=∠GAE=45°,
∵AE=AE,
∴△FAE≌△GAE,
∵AB=BC=
3,∠BAE=30°,
∴BE=1,CE=
3-1,
∵△AGE≌△AFE,
∴∠AFE=∠AGE=75°,
∵∠DFA=90°-∠DAF=75°,
∴∠EFC=180°-∠DFA-∠AFE=180°-75°-75°=30°,
∴CF=3-
3,
∴S△CEF=
1
2CE•CF=2
3-3,
∵△ABG≌△ADF,△FAE≌△GAE,
∴S△AEF=S正方形ABCD-S△ADF-S△AEB-S△CEF=S正方形ABCD-S△AEF-S△CEF
S△AEF=
1
2(S正方形ABCD-S△CEF)=3-
3.
故答案为:3-
3.