作业帮 > 数学 > 作业

关于导数公式的推导这个((x^n)'=nx^(n-1))的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 10:43:29
关于导数公式的推导
这个((x^n)'=nx^(n-1))的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况.在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明.
为什么不能用定义直接证明?
哦,我觉得,可能编写词条的人这样考虑的:
这里面使用到了二项式定理.二项式定理中,n为整数,所以
((x^n)'=nx^(n-1))
lim((x+⊿x)^n-x^n)/⊿x
=(x^n+C(1,n)x^(n-1)*⊿x+C(2,n)x^(n-2)*⊿x^2+..-x^n)/⊿x
=C(1,n)x^(n-1)+C(2,n)x^(n-2)*⊿x+...
=nx^(n-1)+C(2,n)x^(n-2)*⊿x+...
当⊿x趋向0时,后面均为无穷小,所以
((x^n)'=nx^(n-1))
当n为整数是是成立的,n不为整数.(前面有组合数).就需要另行讨论.
但是,其实,
二项式定理对于分数也是可以计算的.(无实际意义)在级数中经常用到
个人觉得可以推广到n为任意实数的一般情况
PS:组合数 (2,1/3)=1/3*(1/3-1)/(2*1)=-1/9
任然使用C(m,n)=P(m,n)/P(m,m)
个人见解.无严格证明