已知函数e^2x+(x+1)e^x是二阶常系数线性非齐次微分方程y''+ay'+by=ce^x的一个特解,则该微分方程的
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 14:13:15
已知函数e^2x+(x+1)e^x是二阶常系数线性非齐次微分方程y''+ay'+by=ce^x的一个特解,则该微分方程的通解为
c1e^2x+c2e^x+xe^x 不知道怎么得出,分数不多还请见谅!
c1e^2x+c2e^x+xe^x 不知道怎么得出,分数不多还请见谅!
y=e^2x+(x+1)e^x
y'=2e^2x+e^x+xe^x
y"=4e^2x+3e^x+xe^x
带入y''+ay'+by=ce^x
解得 a=-3 b=2 c=2
y''-3y'+2y=2e^x
3^2-4*2=1>0
入1=2 入2=1
通解y=c1e^2x+c2e^x
特解e^2x+(x+1)e^x
解为y=c1e^2x+c2e^x+xe^x
y'=2e^2x+e^x+xe^x
y"=4e^2x+3e^x+xe^x
带入y''+ay'+by=ce^x
解得 a=-3 b=2 c=2
y''-3y'+2y=2e^x
3^2-4*2=1>0
入1=2 入2=1
通解y=c1e^2x+c2e^x
特解e^2x+(x+1)e^x
解为y=c1e^2x+c2e^x+xe^x
已知函数e^2x+(x+1)e^x是二阶常系数线性非齐次微分方程y''+ay'+by=ce^x的一个特解,则该微分方程的
下午考试,微分方程已知二阶常系数齐次线性微分方程两个特解为y1=1 y2=e^(-2x),则该微分方程为?
高数:已知函数y=e^x-e^(-x)是某个一阶线性微分方程的特解,求这个微分方程.
已知y=x,y=e^x,y=e^-x是某二阶非齐次线性微分方程的三个解,则该微分方程的通解为?
二阶常系数非齐次线性微分方程 y''-y'-2y=x/e^x 特解猜想的试解形式是
求二阶常系数非齐次线性微分方程y^n-4y=e^2x 的通解
求微分方程的通解特解1.y'=2x的通解2.微分方程y'=e^x-y满足y/x=1 =1+ln2的特解是Ay=ln(e^
求具有特解y1=e^-x,y2=2xe^-x,y3=3e^x 的3阶常系数齐次线性微分方程是什么?
一阶线性微分方程xy'+y=e^x的通解
已知y=xsin2x,y=xcos2x,y=(x+2)e^x 是二阶非齐次线性微分方程三个解,试求出微分方程的通解
高数微分方程,已知y=1 y=x y=x^2 是某二阶非齐次线性微分方程的三个解,则该方程的通解为______
微分方程通解问题已知y=1,y=x,y=x^2是某二阶非齐次线性微分方程的三个解,则该方程的通解为?