设A,B,C分别为m*n,n*s,s*t矩阵,证明rank(B)+rank(ABC)>rank(AB)+rank(BC)
设A,B,C分别为m*n,n*s,s*t矩阵,证明rank(B)+rank(ABC)>rank(AB)+rank(BC)
设A、B分别是s*n,n*m矩阵,证明:rank(ab)=rank(a)+rank(b)-n
证明 设A,B分别是s*n,n*m矩阵,如果AB=0,则rank(A)+rank(B)
矩阵As*n,Bn*m,证明rank(AB)>=rank(A)+rank(B)-n
设A B都为n级矩阵,证明不等式!rank(I-AB)≤rank(I-A)+rank(I-B)
A、B是n阶矩阵,证明:rank(AB)>=rank(A)+rank(B)-n
rank(AB)>=rank(A)+rank(B)-n,这是什么意思?
设A.B都是n级矩阵,证明:如果AB=BA=0,且rank(A²)=rank(A),那么rank(A+B)=r
S rank,A rank
设A是n阶矩阵,证明:rank{A+E}+rank{A-E}>=n.
如何用矩阵相抵证明 rangk(AB)>rank(A)+rank(B)-n (A、 B是矩阵,n是A的列数 也就是B 的
设A是m*n的实矩阵,且rank(A)=n,证明A^T A是正定矩阵