在Rt△ABC中,∠C=90,D是AB的中点E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+BF^2
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 22:05:24
在Rt△ABC中,∠C=90,D是AB的中点E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+BF^2
作DG⊥BC于G,DH⊥AC于H
设AB=c,AC=b,BC=a,GF=x,
则:CD=AD=BD=c/2
DH=BG=CG=a/2,DG=AH=CH=b/2
△DEH~△DFG,EH=DH*FG/DG=a/2*x/(b/2)=ax/b
AE^2+BF^2=(AH-EH)^2+(BG+GF)^2=(b/2-ax/b)^2+(a/2+x)^2=b^2+a^2x^2/b^2+a^2/4+x^2
EF^2=CE^2+CF^2=(CH+EH)^2+(CG-GF)^2=(b/2+ax/b)^2+(a/2-x)^2=b^2+a^2x^2/b^2+a^2/4+x^2
所以,EF^2=AE^2+BF^2
设AB=c,AC=b,BC=a,GF=x,
则:CD=AD=BD=c/2
DH=BG=CG=a/2,DG=AH=CH=b/2
△DEH~△DFG,EH=DH*FG/DG=a/2*x/(b/2)=ax/b
AE^2+BF^2=(AH-EH)^2+(BG+GF)^2=(b/2-ax/b)^2+(a/2+x)^2=b^2+a^2x^2/b^2+a^2/4+x^2
EF^2=CE^2+CF^2=(CH+EH)^2+(CG-GF)^2=(b/2+ax/b)^2+(a/2-x)^2=b^2+a^2x^2/b^2+a^2/4+x^2
所以,EF^2=AE^2+BF^2
在Rt△ABC中,∠C=90,D是AB的中点E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+BF^2
如图,在Rt△ABC中,∠C=90°,D是AB的中点,E、F分别在AC和BC上,且DE⊥DF.求证:EF方=AE方+BF
如图 RT△ABC中 ∠C=90° D是AB中点 E F分别在AC和BC上 且DE⊥DF 求证 以AE EF BF的长为
如图,在Rt△ABC中,∠c=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+
如图,在RT△ABC中,∠C=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF平方=AE平方+
在RT△ABC中,∠C=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF.求证:EF²=AE
如图,在Rt△ABC中,∠C=90°.D是AB的中点,E,F分别为边BC和边AC上,且DE⊥DF.求证:以AE,EF,B
如图,在△ABC中,D是AB的中点,E,F分别是AC,BC上的点,且DE⊥DF,求证:AE+BF>EF.
在RT三角形ABC中,角C=90度 D是AB的中点,E,F分别在AC,和BC上,且DE垂直DF:求证EF的平方=AE的平
如图,△ABC中,∠C=90°,∠B=45°,D为AB中点,E,F分别在AC、BC上,且DE⊥DF.求证:AE^2+BF
在△ABC中,∠C=90°,D是AB的中点,DE⊥DF,DE、DF分别交AC、BC于E、F,求证:EF^2=AE^2+B
在直角三角形abc中,角=90度 d是ab的中点 e.f分别在ac和bc上 且de垂直df 求证 ef方=ae方加bf方