求由曲线y=2-X^2 ,y=2X-1及X≥0围成的平面图形的面积S以及平面图形绕X轴旋转一周所得旋转体的体积Vx
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 21:13:14
求由曲线y=2-X^2 ,y=2X-1及X≥0围成的平面图形的面积S以及平面图形绕X轴旋转一周所得旋转体的体积Vx
由曲线y=2-x²及直线y=2x-1,x=0围成的在y轴右边的区域D及D绕x轴旋转所得的旋转体
楼主的题目叙述不完整.应为:
求由曲线y=2-x²及直线y=2x-1,x=0围成的图形在y轴右边的区域D的面积及D绕x轴旋转所得的旋转体的体积.
解 曲线y=2-x²与直线y=2x-1在y轴右边的交点为(1,1),所以区域D的面积
A=∫[(2-x²)-(2x-1)]dx
=∫[3-x²-2x]dx
=[3x-x^3/3-x^2]
=3-1/3-1
=5/3.
D绕x轴旋转所得的旋转体的体积:
Vx=π∫(2-x^2)^2dx-π∫(2x-1)^2dx
=π∫(4-4x^2+x^4)dx-(π/2)∫(2x-1)^2d(2x-1)
=π[4x-(4/3)x^3+x^5/5]-(π/2)(2x-1)^3/3|
=π[4-4/3+1/5]-(π/2)(1/3)
=27π/10.
楼主的题目叙述不完整.应为:
求由曲线y=2-x²及直线y=2x-1,x=0围成的图形在y轴右边的区域D的面积及D绕x轴旋转所得的旋转体的体积.
解 曲线y=2-x²与直线y=2x-1在y轴右边的交点为(1,1),所以区域D的面积
A=∫[(2-x²)-(2x-1)]dx
=∫[3-x²-2x]dx
=[3x-x^3/3-x^2]
=3-1/3-1
=5/3.
D绕x轴旋转所得的旋转体的体积:
Vx=π∫(2-x^2)^2dx-π∫(2x-1)^2dx
=π∫(4-4x^2+x^4)dx-(π/2)∫(2x-1)^2d(2x-1)
=π[4x-(4/3)x^3+x^5/5]-(π/2)(2x-1)^3/3|
=π[4-4/3+1/5]-(π/2)(1/3)
=27π/10.
求由曲线y=2-X^2 ,y=2X-1及X≥0围成的平面图形的面积S以及平面图形绕X轴旋转一周所得旋转体的体积Vx
求由曲线y=x的平方2,x=y的平方2所围成的平面图形的面积S,以及该平面图形绕x轴旋转转一周所得旋转体体积V
求由抛物线y=1+x^2,x=0,x=1及y=0所围成的平面图形的面积,并求该图形绕x轴旋转一周所得旋转体体积.
求曲线 y=x2-2x,y=0,x=1,x=3所围成的平面图形的面积S,并求该平面图形绕y轴旋转一周所得旋转体
由抛物线根号y=x,直线y=2-x及x轴所围成平面图形的面积 以及该图形绕y轴旋转一周所得旋转体的体积
求由直线y=0,x=0,x=1和曲线y=x^3+1所围成的平面图形的面积及该图形x轴旋转一周所得旋转体的体积.
高数旋转体体积、求由y=x/1 y=x ,及x轴所围的平面图形的面积,及该平面图形绕轴旋转一周所得旋转体体积
求曲线 y=x^2 和x=y^2 所围成的平面图形,绕X轴旋转一周所得到的旋转体体积
(急)高数考题!求由曲线Y=X2与直线x=1,Y=0所围成的平面图形的面积S,求s绕X轴旋转一周所得的旋转体的体积
求面积和旋转体体积求由曲线 y=e^x 和 y=e^(-x) 及 x=1所围成的平面图形的面积及此图形绕x轴旋转一周所形
求由曲线y=2-x2平方,y=0(x≥0)与x=0围成的平面图形的绕x轴旋转一周所得旋转体的体积
设平面图形由y=1/2x平方 与直线y=2所围成,求平面图形面积和绕X轴旋转一周所得到的旋转体的体积.