作业帮 > 数学 > 作业

求证,一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等,求全部过程,因为所以

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 07:27:36
求证,一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等,求全部过程,因为所以
已知:Rt三角形ABC的直角边BC上的中线为AE,直角边AC上的中线为BF;
Rt三角形A'B'C'直角边B'C'上的中线A'E',直角边A'C'上的中线为B'F'.满足AE=A'E',BF=B'F'
求证:Rt三角形ABC全等于Rt三角形A'B'C'
证明:设AC=a,BC=b,A'C'=a',B'C'=b'
由勾股定理,得:AE^2=CE^2+AC^2=(b/2)^2+a^2
BF^2=BC^2+CF^2=b^2+(a/2)^2
同理,A'E'^2=(b'/2)^2+a^2
B'F'^2=b'^2+(a'/2)^2
由AE=A'E'得AE^2=A'E'^2,同理,BF^2=B'F'^2
由此得方程组:
(b/2)^2+a^2=(b'/2)^2+a'^2...(1)
b^2+(a/2)^2=b'^2+(a'/2)^2...(2)
(1)-(2),得:a^2-b^2+(b^2-a^2)/4=a'^2-b'^2+(b'^2-a'^2)/4
即a^2-b^2=a'^2-b'^2,
即a^2-a'^2=b^2-b'^2...(3)
由(1),得:(b^2-b'^2)/4=a'^2-a^2...(4)
将(3)代入(4),得:(a^2-a'^2)/4=a'^2-a^2,即5(a^2-a'^2)/4=0
所以a^2-a'^2=0,即a=a',代入(3)得:b=b'
综上,在Rt三角形ABC与Rt三角形A'B'C'中,AC=A'C',BC=B'C',角ACB=角A'C'B'=90度,所以Rt三角形ABC全等于Rt三角形A'B'C'
结论:一条直角边和另一直角边上的中线对应相等的两个直角三角形全等.
再问: 抱歉啊,完全看不懂QAQ
再答: 简单的就是 中线将三角形分为直角三角形和另一个三角形,根据直角三角形HL定律易得两小直角三角形全等,可得另一直角边的一半相等,然后根据角边角定律可证全等 这样也可以 求采纳