高数二阶导证明问题已知函数f(x)在[0,1]上连续,在(0,1)上二阶可导,f(0)=f(1)=0,且曲线y=f(x)
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 01:44:58
高数二阶导证明问题
已知函数f(x)在[0,1]上连续,在(0,1)上二阶可导,f(0)=f(1)=0,且曲线y=f(x)与直线y=x当x∈(0,1)是有交点,证明:在(0,1)内至少存在一点ξ使得f''(ξ)
已知函数f(x)在[0,1]上连续,在(0,1)上二阶可导,f(0)=f(1)=0,且曲线y=f(x)与直线y=x当x∈(0,1)是有交点,证明:在(0,1)内至少存在一点ξ使得f''(ξ)
因为曲线y=f(x)与直线y=x当x∈(0,1)是有交点,即存在c∈(0,1),使得f(c)=c;
于是由微分中值定理有
f(c)-f(0)=cf'(ξ1);ξ1∈(0,c);得到f'(ξ1)=f(c)/c=1;
同样
f(1)-f(c)=(1-c)f'(ξ2);ξ2∈(c,1);得到f'(ξ2)=-f(c)/(1-c)=-c/(1-c)=1-1/(1-c)
于是由微分中值定理有
f(c)-f(0)=cf'(ξ1);ξ1∈(0,c);得到f'(ξ1)=f(c)/c=1;
同样
f(1)-f(c)=(1-c)f'(ξ2);ξ2∈(c,1);得到f'(ξ2)=-f(c)/(1-c)=-c/(1-c)=1-1/(1-c)
高数二阶导证明问题已知函数f(x)在[0,1]上连续,在(0,1)上二阶可导,f(0)=f(1)=0,且曲线y=f(x)
已知函数f(x)是定义在(0,正无穷大)上的,当x>1时,f(x)>0且f(xy)=f(x)+f(y).
已知函数f(x)是定义在(0,+∞)上的减函数,且满足f(xy)=f(x)+f(y),f(4)=1,
已知函数f(x)在定义域(0,正无穷)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1
已知f(x)是定义在R上的恒不为0的函数,且对任意实数x,y都满足f(x)*f(y)=f(x+y)(1)求f(0)并证明
已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y) f(2)=1
若函数f(x)在【0,1】上连续,证明∫f(sinx)=∫f(cosx) 0
已知f(x)是定义在(0,正无穷)上的增函数且f(x/y)=f(x)-f(y),f(2)=1解不等式f(x)-1/f(x
设f (x )定义在R上的函数,且对任意x,y∈R,恒有f(x+y)=f(x)f(y),且x>0时,f(x)>1证明:
高等数学问题已知函数f(x)在(-∞,+∞)内具有二阶导数,且limf(x)/x=1,f''(x)>0,证明:f(x)>
已知定义在(0,+00)上的函数f(x)为增函数,且f(x)*f[f(x)+1/x]=1,则f(1)等于
已知函数f(x)的定义域为(0,正无穷),当x>1时,f(x)>0,且f(xy)=f(x)+f(y).证明f(x)在定义