已知直线x^2/4+y^2/9=1一组平行直线的斜率是3/2,当它们与椭圆相交时,试求弦中点所形成的轨迹方程
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 19:05:38
已知直线x^2/4+y^2/9=1一组平行直线的斜率是3/2,当它们与椭圆相交时,试求弦中点所形成的轨迹方程
设任一弦为AB,A(x1,y1),B(x2,y2),
x1^2/4+y1^2/9=1,(1)
x2^2/4+y2^2/9=1,(2)
(1)-(2)式,
(x1^2-x2^2)/4+(y1^2-y2^2)/9=0,
9/4+[(y1-y2)/(x1-x2)]*{[(y1+y2)/2]/[(x1+x2)/2]}=0,
其中,k=(y1-y2)/(x1-x2)=3/2,
弦中点坐标M( x0,y0),
x0=(x1+x2)/2,y0=(y1+y2)/2,
9/4+(3/2)*(y0/x0)=0,
y0= y0=-3x0/2,
故弦中点所形成的轨迹方程为:y=-3x/2.
x1^2/4+y1^2/9=1,(1)
x2^2/4+y2^2/9=1,(2)
(1)-(2)式,
(x1^2-x2^2)/4+(y1^2-y2^2)/9=0,
9/4+[(y1-y2)/(x1-x2)]*{[(y1+y2)/2]/[(x1+x2)/2]}=0,
其中,k=(y1-y2)/(x1-x2)=3/2,
弦中点坐标M( x0,y0),
x0=(x1+x2)/2,y0=(y1+y2)/2,
9/4+(3/2)*(y0/x0)=0,
y0= y0=-3x0/2,
故弦中点所形成的轨迹方程为:y=-3x/2.
已知直线x^2/4+y^2/9=1一组平行直线的斜率是3/2,当它们与椭圆相交时,试求弦中点所形成的轨迹方程
已知椭圆X^2/4+Y^2/9=1,一组平行直线的斜率是3/2,当直线与椭圆相交时,证明这些直线被椭圆截得的线段的中点在
已知椭圆x^2/4+y^2/9=1,一组平行直线的斜率是3/2 问:这组直线何时与椭圆相交?当它们与椭圆相交时,...
和椭圆有关的数学题若椭圆方程如下,且已知一组平行直线的斜率是3/2求:当它们与椭圆相交时,这些直线被椭圆截得的线段的中点
已知椭圆X*2/4+Y*2/9=1,一组平行直线的斜率是3/2,这组直线何时与椭圆相交
已知椭圆X【平方/4+Y平方/9=1,一组平行直线的斜率是3/2,这组直线何时与椭圆相交
已知椭圆x^/4+y^/9=1,一组平行直线的斜率是3/2.这组直线何时与椭圆相交?
已知椭圆X^/4+Y^/9=1,一组平行直线的斜率是3/2?
已知椭圆x^2/2+y^2=1,求斜率为2的直线与椭圆相交所得弦中点的轨迹方程
已知椭圆x/2+y=1,求斜率为2的直线与椭圆相交所得弦中点的轨迹方程.
若斜率为1直线l与椭圆x^2/4+y^2=1相交于A B两点,求AB的中点的轨迹方程.
直线l与椭圆x^2/4+y^2=1交于P,Q两点,已知直线斜率为1,则弦PQ中点的轨迹方程为