过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点O的直线交抛物线的准线于D,求证:
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 18:32:01
过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点O的直线交抛物线的准线于D,求证:直线DB平行于抛物线的对称轴.
设抛物线方程为y^2=2px(p>0),①则它的顶点为O(0,0),焦点F为(p/2,0),
设过F的直线为x=my+p/2,②与抛物线交于A(x1,y1),B(x2,y2),
把②代入①,y^2-2mpy-p^2=0,
y1+y2=2mp,y1y2=-p^2,③
x1=y1^2/(2p),
∴2x1y2+py1=y1^2*y2/p+py1=y1[y1y2/p+p]=0,
OA:y=(y1/x1)x交准线:x=-p/2于点D(-p/2,-py1/(2x1)),
∴DB的斜率=[y2+py1/(2x1)]/(x2+p/2)=0,
由③,y2≠0,
∴直线DB平行抛物线的对称轴(x轴).
或用下面的方法
设抛物线焦点为F,A、B到准线距离分别为p,q
则:AF=p,BF=q
作AN⊥准线于N,BD⊥准线于M,连AD,交x轴于O1,
设FO1=a
则:|FO1|/|BD|=|AF|/|AB|
即:|FO1|/q=p/(p+q)
|FO1|=pq/(p+q)
|DO1|/|AN|=|BF|/|AB|
即:|DO1|/p=q/(p+q)
|DO1|=pq/(p+q)
所以:|DO1|=|FO1|
所以,O1与O重合
所以,AO连线与准线的交点B,满足AB⊥准线
即:直线DB平行于抛物线的对称轴
设过F的直线为x=my+p/2,②与抛物线交于A(x1,y1),B(x2,y2),
把②代入①,y^2-2mpy-p^2=0,
y1+y2=2mp,y1y2=-p^2,③
x1=y1^2/(2p),
∴2x1y2+py1=y1^2*y2/p+py1=y1[y1y2/p+p]=0,
OA:y=(y1/x1)x交准线:x=-p/2于点D(-p/2,-py1/(2x1)),
∴DB的斜率=[y2+py1/(2x1)]/(x2+p/2)=0,
由③,y2≠0,
∴直线DB平行抛物线的对称轴(x轴).
或用下面的方法
设抛物线焦点为F,A、B到准线距离分别为p,q
则:AF=p,BF=q
作AN⊥准线于N,BD⊥准线于M,连AD,交x轴于O1,
设FO1=a
则:|FO1|/|BD|=|AF|/|AB|
即:|FO1|/q=p/(p+q)
|FO1|=pq/(p+q)
|DO1|/|AN|=|BF|/|AB|
即:|DO1|/p=q/(p+q)
|DO1|=pq/(p+q)
所以:|DO1|=|FO1|
所以,O1与O重合
所以,AO连线与准线的交点B,满足AB⊥准线
即:直线DB平行于抛物线的对称轴
过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点O的直线交抛物线的准线于D,求证:
已知抛物线y^2=2px(p>0),过焦点F的动直线l交抛物线于A、B两点,O为坐标原点,求证:
设F是抛物线y^2=2px(p大于0)的焦点,直线l过F与抛物线交于A,B两点,准线l'与x轴交于点K.求证角AKF=角
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直
设抛物线 y2=2px (p>0) 的焦点为F 经过点F的直线交抛物线于A,B两点 点C在抛物线的准线上 且BC‖x轴
过抛物线y2=2px(p>0)的焦点F作直线与抛物线交于A、B两点,以AB为直径的圆与抛物线的准线的位置关系是( )
过抛物线y2 =2px (p>0)焦点,且斜率为1的直线交抛物线于A,B两点,若AB=8,求抛物线方程
过抛物线y^2=2px(p>0)的焦点F的直线l交抛物线于A,B两点,交准线于点C,若向量CB=2向量BF,则直线AB斜
如图,过抛物线y2=2px(p>0)的焦点F的直线L交抛物线于点A、B,交其准线于点C,若BC=2BF,且AF=3,则此
如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF
已知抛物线y^2=2px(p>0),过焦点F且斜率为正的直线交其准线于点A,交抛物线于B、C两点,B在A、C之间.
设抛物线C:y^2=2px(p>0),直线l经过抛物线的焦点F与抛物线交于A,B两点,O是坐标原点.