作业帮 > 数学 > 作业

已知中心在坐标原点,焦点F1、F2再x轴上的椭圆C的离心率为根号3/2,抛物线X^2=4y的焦点是椭圆C的一个顶点 (

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 14:45:07
已知中心在坐标原点,焦点F1、F2再x轴上的椭圆C的离心率为根号3/2,抛物线X^2=4y的焦点是椭圆C的一个顶点 (
已知中心在坐标原点,焦点F1、F2再x轴上的椭圆C的离心率为根号3/2,抛物线X^2=4y的焦点是椭圆C的一个顶点
(1)求椭圆标准方程
(2)已知过焦点F2的直线l与椭圆C的两个交点为A(X1,Y1),B(x2,y2),而且|AB|=3,求|AF1|+|BF2|
算第二题
已知中心在坐标原点,焦点F₁,F₂在x轴上的椭圆C的离心率为√3/2,抛物线X²=4y的焦点是椭圆C的一个顶点;(1)求椭圆标准方程;(2)已知过焦点F₂的直线L与椭圆C的两个交点为A(X₁,Y₁),B(x₂,y₂),而且|AB|=3,求|AF₁|+|BF₂|
(1).抛物线x²=4y的焦点F(0,1); 故椭圆短半轴b=1;e²=c²/a²=(a²-1)/a²=3/4,故a²=4;
于是得椭圆方程为x²/4+y²=1;a=2,b=1,c=√3;F₁(-√3,0);F₂(√3,0).
(2)设过F₂的直线L的方程为y=k(x-√3),代入椭圆方程得x²/4+k²(x-√3)²=1,即有
(1+4k²)x²-8(√3)k²x+12k²-4=0.(1)
故x₁+x₂=8(√3)k²/(1+4k²);x₁x₂=(12k²-4)/(1+4k²)
︱AB︱=[√(1+k²)]√[(x₁+x₂)²-4x₁x₂]=[√(1+k²)]√[192k⁴/(1+4k²)²-4(12k²-4)/(1+4k²)]
=4(k²+1)/(1+4k²)=3,故k²=1/8,k=±√2/4;代入(1)式得:
(3/2)x²-(√3)x-(5/2)=0,即有3x²-2(√3)x-5=0.(2)
故得x₁=(√3+3√2)/3,y₁=(√2/4)[(√3+3√2)/3-√3]=(3-√6)/6;
故︱AF₁︱=√{[(√3+3√2)/3+√3]²+[(3-√6)/6]²}=[√(31+10√6)]/2
︱AF₁︱+︱AF₂︱=2a=4,故︱AF₂︱=4-︱AF₁︱
∴︱AF₁︱+︱BF₂︱=︱AF₁︱+︱AB︱-︱AF₂︱=︱AF₁︱+︱AB︱-(4-︱AF₁︱)
=2︱AF₁︱+3-4=2︱AF₁︱-1=[√(31+10√6)]-1
已知中心在坐标原点,焦点F1、F2再x轴上的椭圆C的离心率为根号3/2,抛物线X^2=4y的焦点是椭圆C的一个顶点 ( 已知中心在坐标原点,焦点F1、F2再x轴上的椭圆C的离心率为根号3、2,抛物线X^2=4y的焦点是椭圆C的一个顶点 已知中心在坐标原点,焦点F1、F2在x轴上的椭圆C离心率为(√3)/2,抛物线x^2=4y的焦点是椭圆的一个顶点. 已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线Y=1/4X2的焦点,离心率为(2根号5)/5!求椭圆的标 已知中心在坐标原点,焦点F1、F2在x轴上的椭圆C的离心率为2分之根号3, 已知椭圆C的中心在坐标原点,焦点在x轴上,离心率是根号3/2,F1,F2分别为左右焦点,点M在椭圆上且三角形MF1F2的 已知中心在原点,焦点在x轴上的椭圆c的离心率1/2,一个顶点是抛物线X2=-4根号下3y的焦点.(1)求椭圆的标... 已知椭圆C的中心在坐标原点,焦点F1,F2在x轴上,椭圆C的离心率为2分之1,短轴一个端点到右焦点F2的距离为2,求椭圆 已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线Y=1/4X2的焦点,离心率为(2根号5)/5 已知椭圆C的中心在原点,焦点在x轴上,离心率e=1/2,一个顶点的坐标为(0,根号3) 已知椭圆C的中心在原点焦点在x轴上离心率e=1/2一个顶点的坐标为(0,根号3) 已知椭圆c的中心在坐标原点,对称轴为坐标轴,左右焦点分别为F1,F2且椭圆c的右焦点F2,与抛物线y^2=4√3x的焦点