已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 03:56:43
已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),
与x轴交于点A、B,点A的坐标为(4,0)
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)在(2)的条件下第一象限抛物线求一点P,使角ACP=角ACQ
主要是第(3)问 谢谢了.很急
与x轴交于点A、B,点A的坐标为(4,0)
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)在(2)的条件下第一象限抛物线求一点P,使角ACP=角ACQ
主要是第(3)问 谢谢了.很急
将C点坐标代入抛物线解析式组成方程,求出c=4.将A点坐标代入抛物线解析式,0=16a-8a+4,解出a=-0.5.抛物线是y=-0.5x²+x+4=-0.5(x²-2x+1)+4.5=-0.5(x-1)²+4.5.将y=0代入方程,求出B点x坐标=-2.B点(-2,0).
抛物线对称轴是x=1.
(2)求面积最大值,将S△CQE=S△BCA-S△CQA-S△BEQ,而S△CQA=2(4-xQ),S△BEQ根据相似△可以求出与Q的x坐标关系.
(3)CQ直线方程可以求出,斜率可以求出,AC斜率可以求出,则CP斜率也可以求出,又CP过C点,CP直线方程可以得到,将其与抛物线方程联立,可以求出P点坐标.
P和Q不一定相对于AC对称的.
再问: 亲,还有其他方法吗。。斜率我们还没学。。我用的联立方程组。。算出来了。。但不一定对。。
再答: 联立方程组怎么联立的?那就用三角函数吧!根据几何关系,有∠ACP=∠ACQ=∠CQB-∠CAQ,Q的坐标求出后,上式右侧角度都可以求出。CP与y轴的角度可求出,建立CP直线方程,与抛物线解析式联立,即可求出P点坐标。
抛物线对称轴是x=1.
(2)求面积最大值,将S△CQE=S△BCA-S△CQA-S△BEQ,而S△CQA=2(4-xQ),S△BEQ根据相似△可以求出与Q的x坐标关系.
(3)CQ直线方程可以求出,斜率可以求出,AC斜率可以求出,则CP斜率也可以求出,又CP过C点,CP直线方程可以得到,将其与抛物线方程联立,可以求出P点坐标.
P和Q不一定相对于AC对称的.
再问: 亲,还有其他方法吗。。斜率我们还没学。。我用的联立方程组。。算出来了。。但不一定对。。
再答: 联立方程组怎么联立的?那就用三角函数吧!根据几何关系,有∠ACP=∠ACQ=∠CQB-∠CAQ,Q的坐标求出后,上式右侧角度都可以求出。CP与y轴的角度可求出,建立CP直线方程,与抛物线解析式联立,即可求出P点坐标。
已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),
(2008•重庆)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A
已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点,点A的坐标为(-1,0
已知,如图1,抛物线y=ax²-2ax+c(a≠0)与y轴交于点C(0,-4)
已知如图抛物线y=ax²-2ax+c(a≠0)与y轴交于点c(0,4),与x轴交于点A、B,点A的坐标为(4,
已知,如图,抛物线y=ax^2-2ax+c(a不等于0)的图像与y轴交于点c(0,4),与x轴交于点A、B,点A的坐标为
已知,如图,抛物线y=ax^2-2ax+c(a不等于0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两
如图①,已知直线y=x+b与y轴交于点C(0,3),与x轴交于点A,抛物线y=ax2+2ax+c过点C、A,且与x轴交于
如图,已知抛物线y=ax∧2+bx+c(a≠0)的顶点坐标为(4,-2/3),且与y轴交于点C(0,2),与x轴交于A、
如图,已知抛物线y=ax平方+bx-2(a不等0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(
如图1,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).