设线空间中α1,α2,……,αm线性无关,且向量组α1,α2,……αm,β线性相关,则β可由α1,α2,……,αm线性表
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 18:28:52
设线空间中α1,α2,……,αm线性无关,且向量组α1,α2,……αm,β线性相关,则β可由α1,α2,……,αm线性表出,且表出是唯一的 这个如何证明啊?
这是矩阵分析中的一条定理,他没有证明.
这是矩阵分析中的一条定理,他没有证明.
设有数k1,..km.t使得k1a1+..kmam+tβ=0
如果t=0那么根据α1,α2,……,αm线性无关,所以k1=k2=...km=0所以α1,α2,……αm,β线性无关与已知矛盾 所以t≠0
所以β=-(k1a1+..kmam)/t也就是β可由α1,α2,……,αm线性表出
下面说明唯一性 设β=k1a1+...kmam 且β=l1a1+...lmam
两式相减有0=(k1-l1)a1+...(km-lm)am
根据α1,α2,……,αm线性无关 所以ki=li对任意的i=1,2.m
所以表法唯一
如果t=0那么根据α1,α2,……,αm线性无关,所以k1=k2=...km=0所以α1,α2,……αm,β线性无关与已知矛盾 所以t≠0
所以β=-(k1a1+..kmam)/t也就是β可由α1,α2,……,αm线性表出
下面说明唯一性 设β=k1a1+...kmam 且β=l1a1+...lmam
两式相减有0=(k1-l1)a1+...(km-lm)am
根据α1,α2,……,αm线性无关 所以ki=li对任意的i=1,2.m
所以表法唯一
设线空间中α1,α2,……,αm线性无关,且向量组α1,α2,……αm,β线性相关,则β可由α1,α2,……,αm线性表
设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm线性无关的充分必要条件为( )
设向量组α1,α2,…,αn线性无关,向量组β,α1,α2,…,αn线性相关β,α1,α2,…,αn证明有且仅有一个向量
已知α1,α2,…αm线性无关,证明向量组α1-αm,α2-αm…αm-1-αm也线性无关
关于线性代数的问题设向量组α1,α2,α3,α4,……αm(m>1)线性无关,且β=α1+α2+α3+α4+……αm,证
设向量组α1,α2,...,αn中,前n-1个向量线性相关,后n-1个向量线性无关,试讨论:
线性代数的证明题,设向量β可由向量组α1,α2,…αS,线性表示,但不能由向量组(Ⅰ)α1,α2,…αS-1线性表示.记
已知向量组α1,α2,α3线性无关,而向量组α1+α2,α2+α3,mα3 +nα1线性相关,则数m和n应满足
设向量组α1,α2,…,αr线性相关,而其中任意r-1个向量都线性无关,证明:要使k1α1+k2α2+…+krαr=0成
大学线性代数题~设向量组α1,α2,…,αr线性相关,而其中任意r-1个向量都线性无关,证明:要使k1α1+k2α2+…
设数域F上向量空间V的向量组{α1 ,α2 ,α3}线性无关,向量β1可由α1 ,α2 ,α
设α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而β2不可由α1,α2,α3线性表示,对任意常数k讨论