作业帮 > 数学 > 作业

如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交AB边于E,连结CE,请证明关系式DE^=AE

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 00:03:01
如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交AB边于E,连结CE,请证明关系式DE^=AE*CE
能把QQ给我吗?给你图
设F为BC的中点,连接DF,DF交CE于G
∵AD⊥AB,BC⊥AB,AD=BF
∴DF‖AB
∴CG/GE=CF/FB=1
∴G为直角三角形EDC斜边EC上的中点
∴DG=CG,∠DCG=∠CDG
∵∠CDG+∠EDG=90,∠ADE++∠EDG=90
∴∠ADE=∠CDG=∠DCG
又∵∠DAE=∠EDC=90
∴△DAE≌△CDE
∴DE/AE=CE/DE
即DE^2=AE*CE
原式得证.