设函数f(x)=ax^2+bx+c,其中a∈N*,b∈N,c∈Z
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 08:41:06
设函数f(x)=ax^2+bx+c,其中a∈N*,b∈N,c∈Z
(1)若b>2a,且函数f(z)(z∈[-1,+1])的最大值为2.最小值为-4,求f(x)的解析式
(2)在(1)的条件下设函数g(x)=-f(x)+7x-2在[m,n]上的值域是[-5,4],试求m^2+n^2的取值范围
(1)若b>2a,且函数f(z)(z∈[-1,+1])的最大值为2.最小值为-4,求f(x)的解析式
(2)在(1)的条件下设函数g(x)=-f(x)+7x-2在[m,n]上的值域是[-5,4],试求m^2+n^2的取值范围
函数f(x)=ax^2+bx+c,它的对称轴是-b/2a,若b>2a,那么对称轴在-1的左边
a是正数,所以开口向上
在z∈[-1,+1]是单调递增的
所以f(-1)=-4,f(1)=2
求得b=3,a=1,c=-2
f(x)=x^2+3x-2
g(x)=-f(x)+7x-2=-x^2+4x=-(x-2)^2+4
在[m,n]上的值域是[-5,4],
[m,n]这个区间是[-1,2]或者[2,5]或者[-1,5]
m^2+n^2=5或者29或者26
a是正数,所以开口向上
在z∈[-1,+1]是单调递增的
所以f(-1)=-4,f(1)=2
求得b=3,a=1,c=-2
f(x)=x^2+3x-2
g(x)=-f(x)+7x-2=-x^2+4x=-(x-2)^2+4
在[m,n]上的值域是[-5,4],
[m,n]这个区间是[-1,2]或者[2,5]或者[-1,5]
m^2+n^2=5或者29或者26
设函数f(x)=ax^2+bx+c,其中a∈N*,b∈N,c∈Z
B组题:设函数f(x)=ax平方+1/bx+c是奇函数.其中a.b.c€N.且f(1)=2,f(2)>3
设函数f(x)=ax^2+1/bx+c(a,b,c∈Z)是奇函数,且f(1)=2,f(2)
已知函数f(x)=ax^2+bx+c,其中a属于N*,b属于N,c属于Z;(1)b>2a,且f(sina)(a属于R)的
二次函数区间最值?设f(x)=ax^2+bx+c(a≠0),x∈[m,n](m<n),且a>0当m<-b/2a<m+n/
设函数f(x)=(ax²+1)/(bx+c) 且(a,b,c∈Z)是奇函数,且在[1,+∞)上单调递增,f(1
设二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足下列条件:
已知函数f(x)=ax²+c/bx+c(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.
设奇函数F(X)=ax^2+1/bx+c,(a,b,c∈Z),且f(1)=2,f(2)
设f(x)=(ax²+1)/(bx+c)是奇函数(a、b、c∈Z),且f(1)=2,f(2)
已知函数f(x)=x^3-ax^2+bx+c(a,b,c∈R)
设函数f(x)=ax^3-(a+b)x^2+bx+c,其中a>0,b,c∈R.证明:当0≤x≤1时,有|f'(x)|≤m