已知数列{an}是等比数列,a2=2,a5=6,则a1a2+a2a3+a3a4+...+ana(n+1)=
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 18:42:25
已知数列{an}是等比数列,a2=2,a5=6,则a1a2+a2a3+a3a4+...+ana(n+1)=
2^(2n+1) -2/3
2^(2n+1) -2/3
a1a2+...+ana(n+1)=S
a1a2+...+ana(n+1)=a1*a1*q+a2*a2*q...an*an*q=S
a2a2+...+anan=S/q-a1*a1=S/q-a2*a2/(q^2)
a1a2+...+ana(n+1)=a2*a2/q+...+an*an/q+a(n+1)*a(n+1)/q=S
a2a2+...+anan=S*q-a(n+1)*a(n+1)=S*q-a2*a2*(q^(2n-2))
S/q-a2*a2/(q^2)=S*q-a2*a2*(q^(2n-2))
S*q-a2*a2=S*(q^3)-a2*a2*(q^(2n))
把a2=2代入上式,得
S*q-4=S*(q^3)-4*(q^(2n))
S=4*(q^(2n)-1)/(q^3-q)
q^3=a5/a2=6/2=3
把q值代入上式,化简(输入太繁琐了)
好像与提供的答案有出入,请核对
a1a2+...+ana(n+1)=a1*a1*q+a2*a2*q...an*an*q=S
a2a2+...+anan=S/q-a1*a1=S/q-a2*a2/(q^2)
a1a2+...+ana(n+1)=a2*a2/q+...+an*an/q+a(n+1)*a(n+1)/q=S
a2a2+...+anan=S*q-a(n+1)*a(n+1)=S*q-a2*a2*(q^(2n-2))
S/q-a2*a2/(q^2)=S*q-a2*a2*(q^(2n-2))
S*q-a2*a2=S*(q^3)-a2*a2*(q^(2n))
把a2=2代入上式,得
S*q-4=S*(q^3)-4*(q^(2n))
S=4*(q^(2n)-1)/(q^3-q)
q^3=a5/a2=6/2=3
把q值代入上式,化简(输入太繁琐了)
好像与提供的答案有出入,请核对
已知数列{an}是等比数列,a2=2,a5=6,则a1a2+a2a3+a3a4+...+ana(n+1)=
已知{an}是等比数列,a2=2,a4=8,则a1a2+a2a3+a3a4+...+ana(n+1)=?
已知{an}是等比数列,a2=2,a5=1/4,a1a2+a2a3+.+ana(n+1)
已知an是等比数列,a2=2,a5=1/4,则a1a2+a2a3+……+ana(n+1)= 为什么 ana(n+1)/a
在等比数列an中,a3=1,a5=1/4则a1a2+a2a3+a3a4+.+ana(n+1)=
在等比数列{an}中,a2=2,a5=1/4则a1a2+a2a3+…+ana(n+1)等于?
已知数列{an}的前n项和Sn=+2n,Tn=1/(a1a2)+1/(a2a3)+1/(a3a4)+...+1/(ana
已知{an}是等比数列,a2=2,a5=1/4,则a1a2+a2a3+...+anan+1=?
已知{an}是等比数列,a2=2,a5=14,则a1a2+a2a3+…+anan+1=( )
已知{an}是等比数列,a2=2,a5=14,则a1a2+a2a3+…+anan+1(n∈N*)的取值范围是( )
已知数列an为等比数列,a2=2,a5=1/4,则a1a2+a2a3+...+anan+1等于,求详细过程
已知数列an为等比数列,a2=2,a5=1/4,则a1a2+a2a3+...+anan+1等于,请问详细过程