来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 14:41:04
一道九年级数学几何证明题
如图,四边形ABCD中,AB= CD,E F G分别是AD BC BD 的中点,H是EF的中点.试说明线段GH与线段EF的位置关系.
EF⊥GH.
证明:连接EG,GF,FH,EH,
∵E、F分别是AD、BC的中点,G、H分别是BD、AC的中点
∴EG= 12AB,EH= 12CD,
又∵AB=DC,
∴EG=EH,
∵EG∥AB,HF∥AB,
∴EG∥HF,同理GF∥EH,
∴四边形EGFH是菱形,EF,GH分别为对角线,
∴EF⊥GH.