对于点O、M,点M沿MO的方向运动到O左转弯继续运动到N,使OM=ON,且OM⊥ON,这一过程称为M点关于O点完成一次“
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 09:44:40
对于点O、M,点M沿MO的方向运动到O左转弯继续运动到N,使OM=ON,且OM⊥ON,这一过程称为M点关于O点完成一次“左转弯运动”.正方形ABCD和点P,P点关于A左转弯运动到P1,P1关于B左转弯运动到P2,P2关于C左转弯运动到P3,P3关于D左转弯运动到P4,P4关于A左转弯运动到P5,….
以D为原点、直线AD为y轴建立直角坐标系,并且已知点B在第二象限,A、P两点的坐标为(0,4)、(1,1),求p1的坐标
以D为原点、直线AD为y轴建立直角坐标系,并且已知点B在第二象限,A、P两点的坐标为(0,4)、(1,1),求p1的坐标
连接BP1;\x0c由题意知:\x0cAP1=AP,AB=AD,角BAP1=角DAP;\x0c所以,三角形BAP1全等三角形DAP;\x0c故:BP1=DP=根号2;\x0c过P1做P1E垂直AB于E.做PF垂直AD于F;\x0c则:P1E=PF=1\x0c所以P1点坐标为(-3,3).\x0c
对于点O、M,点M沿MO的方向运动到O左转弯继续运动到N,使OM=ON,且OM⊥ON,这一过程称为M点关于O点完成一次“
如图所示,一电场的电场线分布关于y轴(沿竖直方向)对称,O、M、N是y轴上的三个点,且OM=MN.P点在y轴右侧,MP⊥
在直角坐标系内,O为原点,点M在单位圆上运动,N(2,-1),满足向量OP=2向量OM—向量ON的点P的轨迹方程为( )
在直角坐标系中,o 为原点,点M在单位圆上运动,N(2,-1)满足向量oP=2向量OM-向量ON的点P 的轨迹方程为
已知定点M(-3,4),动点N在圆x^2+y^2=4上运动,O为坐标原点,以OM,ON为边做平行四边形MONP,求点P的
设M是圆x2+y2-6x-8y=0上的动点,O是原点,N是射线OM上的点,若|OM|•|ON|=150,求点N的轨迹方程
设M是圆x^2+y^2-6x-8y=0上的动点,o是原点,N是射线OM上的点,若|OM|*|ON|=150,求点N的轨迹
如图,在△ABC,点O为BC的中点,点M为AB上一点,ON⊥OM交AC于N.求证:BM+CN>MN
设M是圆x2+y2-6x-8y=0上动点,O是原点,N是射线OM上点,若|OM|•|ON|=120,求N点的轨迹方程.
已知AB、CD是圆O的弦,且AB+CD,OM⊥AB,ON⊥CD,垂足分别是点M、N,BA、DC的延长线交于点P,求证:P
连接原点O和抛物线y=1/2·x^2上的动点M,延长OM到P点,使|OM|=|MP|,求点P的轨迹方程,说明它是什么曲线
如图,圆O中,已知AB,AC为弦,OM⊥AB于点M,ON⊥AC