作业帮 > 数学 > 作业

设A,B是n阶方阵 P,Q是n阶可逆矩阵

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 08:52:23
设A,B是n阶方阵 P,Q是n阶可逆矩阵
若B=PAQ 则A的行向量组与B的行向量组等价 该命题错误 为什么错?
明显A B等价 怎么行向量组就不等价?行向量组是什么?
给你例子看看
A=[1,0;0,0],B=[0,0;0,1]
则因为r(A)=r(B)=1,所以A与B等价.
但它们的行向量组,列向量组都不等价
A的行向量组是 (1,0),(0,0)
B的行向量组是 (0,0),(0,1)
再问: 你的这个例子 满足条件B=PAQ吗?
再答: 当然. 因为 A,B秩都是1, 所以它们等价 取P=Q= 0 1 1 0 你试试看
再问: A,B的行向量组与列向量组 为什么不等价?
再答: A的行向量组中向量(1,0) 不能由B的行向量组 (0,0),(0,1) 线性表示 所以A,B的行向量组不等价!!! 列向量组类似. 你不会再追问为什么了吧