已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 19:04:04
已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n-1
当n=1时|X2-X1|=1/6成立 当n≥2时易知0<Xn-1<1所以1+Xn-1<2所以Xn=1/(1+Xn-1)>1/2 又有|Xn+1-Xn|=|1/(1+Xn)-1/(1+Xn-1)|=|Xn-Xn-1|/[(1+Xn)*(1+Xn-1)]又有注意到(1+Xn)*(1+Xn-1)=[1+1/(1+Xn-1)]*(1+Xn-1)=2+Xn-1≥2+1/2=5/2 所以|Xn+1-Xn|≤2/5|Xn-Xn-1|≤(2/5)²|Xn-1-Xn-2|≤.≤(2/5)ˆn-1*|X2-X1|=1/6(2/5)ˆn-1
获证 mio!
获证 mio!
已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n
已知数列{xn}满足x1=3,x2=x1/2,...,xn=1/2(xn-1+xn-2),n=3,4,...,则xn等于
已知x1≠1,x1>0,xn+1=xn(xn^2+3)/(3xn^2+1)(n∈N),求证:数列{xn}或者对任意正整数
已知数列xn满足x1=4,x(n+1)=(xn^2-3)/(2xn-4)
已知数列xn满足xn-xn^2=sin(xn-1/n),证明xn的趋向正无穷的极限为0
已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,猜想数列{X2n}的单调性,并证明你的结论
X1=1,Xn=1+Xn/(1+Xn),n=1,2…,求Xn
已知数列{xn}由下列条件确定:x1=a>0,xn+1=1/2(xn+a/xn)(n∈N+)求证
Xn+1-Xn=(-1/2)^n n∈N+ 且X1=1 求Xn
设数列{xn}满足xn+1=xn/2+1/xn,X0>0,n=0,1,2,3,...证明数列{xn}极限存在并求出其极限
已知数列{xn}中,x1=1,xn+1=1+xn/(p+xn)(n∈N*,p是正常数).当p=2时,用数学归纳法证明xn
数列{Xn}中,X1=1/2,X(n+1)=2Xn/(1+Xn^2),求Xn