设函数f(x)=1/3x^3-ax^2-ax,g(x)=2x^2+4x+c 当a=-1时,x属于-3,4的闭区间,函数f
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 23:07:11
设函数f(x)=1/3x^3-ax^2-ax,g(x)=2x^2+4x+c 当a=-1时,x属于-3,4的闭区间,函数fx和gx有两个公共点,
求C的取值范围.
求C的取值范围.
令f(x)=g(x),则有1 3 x3-x2-3x-c=0,∴c=1 3 x3-x2-3x,
设F(x)=1 3 x3-x2-3x,G(x)=c,令F′(x)=x2-2x-3=0,解得x1=-1或x=3.
列表如下:
由此可知:F(x)在(-3,-1)、(3,4)上是增函数,在(-1,3)上是减函数.
当x=-1时,F(x)取得极大值F(-1)=5 3 ;当x=3时,F(x)取得极小值
F(-3)=F(3)=-9,而F(4)=-20 3 .
如果函数f(x)与g(x)的图象有两个公共点,则函数F(x)与G(x)有两个公共点,
所以-20∕3 <c<5∕3 或c=-9.
设F(x)=1 3 x3-x2-3x,G(x)=c,令F′(x)=x2-2x-3=0,解得x1=-1或x=3.
列表如下:
由此可知:F(x)在(-3,-1)、(3,4)上是增函数,在(-1,3)上是减函数.
当x=-1时,F(x)取得极大值F(-1)=5 3 ;当x=3时,F(x)取得极小值
F(-3)=F(3)=-9,而F(4)=-20 3 .
如果函数f(x)与g(x)的图象有两个公共点,则函数F(x)与G(x)有两个公共点,
所以-20∕3 <c<5∕3 或c=-9.
设函数f(x)=1/3x^3-ax^2-ax,g(x)=2x^2+4x+c 当a=-1时,x属于-3,4的闭区间,函数f
已知函数f(x)=ax^2+1(a>0)g(x)=x^3+bx 当a^2=4b时,求函数f(x)+g(x)的单调区间,并
已知函数f(x)=x^3+3ax-1,g(x)=f`(x)-ax-5,f`(x)是f(x)的导函数,设a=-m^2,当实
已知函数f(x)=x^3-ax^2-a^2x+1 g(x)=1-4x-ax^2其中实数a≠0 求函数f(x)的单调区间
设函数f(x)=3ax²-2(a+c)x+c(a>c>0).函数f(x)在区间(0,1)内是否有零点?为什么?
设函数f(x)=x^2+2ax+3a-1在区间[-2,4]上的最小值为g(a),求g(a)的表达式
导函数单调区间已知f(x)=x^3 ax^2 x 1,a属于R.讨论函数f(x)的单调区间已知f(x)=x^3+ax^2
已知函数f(x)=x^3-3ax^2+2ax+1,当a>0时,设函数g(x)=f(x)+3-2ax,若a∈〔1,2〕,g
设函数f(x)=3^x,且f(a+2)=18,g(x)=3^(ax)-4^x的定义域为[0,1]
设函数f(x)=-x^3+ax^2+(a^2)*x+1(x属于R),其中a属于R,当a不等于0时,求函数f(x)的极大值
已知函数f(x)=x的三次方+3ax的平方+(3-6a)x+12a-4(a属于R) 当a=1/2时,求f(x)的单调区间
已知函数f(x)=ax^3-3/2ax^2,g(x)=3(x-1)^2,当a>0,求f(x)和g(x)的公共单调区间