①已知边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D亮点的懂点,F是CD上的动点,满足AE+CF=a,求证:
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 20:54:35
①已知边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D亮点的懂点,F是CD上的动点,满足AE+CF=a,求证:无论E、F怎样移动,△BEF总是正三角形,请求出该三角形面积的变化范围.已知边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D亮点的懂点,F是CD上的动点,满足AE+CF=a,求证:无论E、F怎样移动,△BEF总是正三角形,请求出该三角形面积的变化范围.
②正△ABC,AB、AC的垂线交于D,在AB上任意取一点E,作∠EDF=60°,交AC于F,试探究,BE+CF=EF
第二提的图。
②正△ABC,AB、AC的垂线交于D,在AB上任意取一点E,作∠EDF=60°,交AC于F,试探究,BE+CF=EF
第二提的图。
证明:
连接对角线BD
因为角A=60度
所以三角形ABD是等边三角形
所以角CDB=60度
因为AE+CF=a
所以DE=CF
又因为∠FBC+∠DBF=∠DBC=60°
即∠EBD+∠DBF=60
所以△BEF是正三角形
设:三角形BEF的边长为X,则面积为√3/4X²
而X的变化范围为a-√3/2a
所以面积为√3/4a²-3√3/16a²
EF=FD,BE+CF=FD
BE+CF=EF
连接对角线BD
因为角A=60度
所以三角形ABD是等边三角形
所以角CDB=60度
因为AE+CF=a
所以DE=CF
又因为∠FBC+∠DBF=∠DBC=60°
即∠EBD+∠DBF=60
所以△BEF是正三角形
设:三角形BEF的边长为X,则面积为√3/4X²
而X的变化范围为a-√3/2a
所以面积为√3/4a²-3√3/16a²
EF=FD,BE+CF=FD
BE+CF=EF
①已知边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D亮点的懂点,F是CD上的动点,满足AE+CF=a,求证:
在边长为a的菱形ABCD中,角DAB等于60°,E是AD上异于A,D两点的动点,F是CD上的动点,满足AE+CF=a.
在边长为a的菱形ABCD中,∠DAB=60°,E是AD上异于A,D两点的动点,F是CD上的动点,满足AE+CF=a
如图,在边长a的菱形ABCD中,∠DAB=60°,E是AD边上异于A,D两点的动点,F是CD边上的动点,且满足AE+CF
边长为a的菱形ABCD中 ∠DAB=60度 E为AD上异于A D两点的一动点F为CD边上的动点 且AE+CF=a 求出三
如图,在边长为a的菱形ABCD中,角DAB=60°,E是AD上的动点,F是CD上的动点,满足AE+CF=a,说明;不论E
边长为a的菱形ABCD中,∠DAB=60°,E为AD上异于A,D的一动点,F为CD上一动点,且AE+CF=a。
如图,边长为4的菱形ABCD中,∠DAB=60°,E是AD上的动点(与A,D不重合),F是CD上的动点,且AE+CF=4
如图,在边长a的菱形ABCD中,∠DAB=60°,E是AD边上位于A,D两点的动点,F是CD边上的动点,且满足AE+AD
如图,在边长为M的菱形ABCD中,∠DAB=60°,E是AD上不同于A,D两点的一动点,F是CD上一动点,且AE+CF=
如图,在边长为2a的菱形ABCD中,角DAB=60°,E是AD上不同于A,D两点的一动点,F是CD上一动点,且AE+CF
如图,在边长为m的菱形ABCD中,∠DAB=60°,E是AD上不同于A、D两点的一动点,F是CD上一动点,且AE+CD=