数学上的映射概念是集合A中的任意一个元素X在集合B中都有唯一确定的元素Y与之对应、那么可以多对一吗?就是比如A中有ABC
数学上的映射概念是集合A中的任意一个元素X在集合B中都有唯一确定的元素Y与之对应、那么可以多对一吗?就是比如A中有ABC
设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中任意一个元素X,在集合B中都有唯一确定的元素y与之
函数映射的概念设A、B是两个非空的集合,如果按照一个确定的对应关系f,使对于集合A中的任意一个元素X,在集合B中都有(
假如对应f:A→B是一个映射,那么集合B中的元素可以有剩余吗
映射f:A→B,如果满足集合B中的任意一个元素在A中都有原象,则称为‘满射’.已知集合A中有4个元素,集合B中有3个元素
映射f:A→B,如果满足集合B中的任意一个元素在A中都有原象,则称为“满射”.已知集合A中有4个元素,集合B中有3个元素
设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它
关于高一数学的一个映射概念:若集合A中有m个元素,集合B中有n个元素,则可构成的映射f:A→B有n的m次方个
大家都知道函数一定是映射,而映射不一定是函数.在映射中,集合A.B与对应关系f是确定的.允许B中的元素在集合A中没有原像
映射个数求法如果有集合A中有三个元素集合B中有两个元素那么集合A到B可以组成几个映射 有公式n(集合B中元素个数)的m(
设S是至少含有两个元素的集合,在S上定义了一个运算“※”(即对任意的a、b∈S,对于有序元素对(a,b),在S中有唯一确
设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意a,b∈S,对于有序元素对(a,b),在S中有唯一